Proceedings
Work-in-Progress Session
of LCTES 2012

June 12-13, 2012
Beijing, China

Edited by Jan Reineke

Message from the WiP Chair

Dear Colleagues:

Welcome to Beijing and to the Work-in-Progress (WiP) session of LCTES 2012. T am
pleased to present to you six papers on WiP that describe innovative research contribu-
tions in the broad field of languages, compilers, tools and theory for embedded systems.
The six accepted papers were selected from nine submissions.

The purpose of the LCTES WiP session is to provide researchers in academia and industry
an opportunity to discuss their research ideas and to gather feedback from the community
at large. Special thanks go to the Work-in-Progress Program Committee members Patri-
cia Derler, Daniel Grund, Nan Guan, Claire Maiza, Hiren D. Patel, and Benny Akesson
for their good work in reviewing the submissions.

Jan Reineke
Work-in-Progress Chair
LCTES 2012

Program Committee

Patricia Derler University of California, Berkeley, USA
Daniel Grund Saarland University, Germany

Nan Guan Uppsala University, Sweden

Claire Maiza Verimag, France

Hiren D. Patel University of Waterloo, Canada

Jan Reineke Saarland University, Germany

Benny Akesson Eindhoven University of Technology, Netherlands

Table of Contents

Object Oriented Programming in C: A Case Study of TMS320C6418 1
Tanin Afacan

Dynamic Code Generation: An Experiment on Matrix Multiplication 5
Damien Couroussé and Henri-Pierre Charles

Static Analysis of Worst-Case Inter-Core Communication Latency in CMPs
with 2D-Mesh NoC 9
Yiqiang Ding and Wei Zhang

Adaptable and Precise Worst Case Execution Time Estimation Tool 13
Vladimir-Alexandru Paun and Bruno Monsuez

WCET Estimation of Multi-Core Processors with the MSI Cache Coherency
Protocol 17
Pradeep Subedi and Wei Zhang L oL

Introducing Service-oriented Concepts into Reconfigurable MPSoC on FPGA
for Coarse-grained Parallelization 21
Chao Wang, Li Xi, Peng Chen, Junneng Zhang, Xiaojing Feng and Xuehai Zhou

Object Oriented Programming in C:
A Case Study of TMS320C6418

Tanin Afacan

Aselsan A.S.
Ankara, Turkey
tafacan@aselsan.com.tr

Abstract

This paper presents an empirical study of the impact of Object
Oriented Programming Implementation in C on the memory and
execution time of a fixed-point Digital Signal Processor from
Texas Instruments; TMS320C6418 [1]. Actually, the object-
oriented approach introduces a significant performance penalty
compared to classical procedural programming. One can find the
studies of the object-oriented penalty on the system in terms of
execution time and memory allocation in the literature. Since, to
the author’s best knowledge the study of the overheads of Object
Oriented Programming implementation in C for the embedded
systems is not widely published in the literature. Besides, it is
possible to implement Object Oriented Design in a procedural
language. The basic Object Oriented Programming features can be
implemented in C such as creating objects, polymorphism, virtual
functions, sub-classing, and inheritance. The main contribution of
the paper is to bring further evidence that embedded system
software developers have to consider the complexity and
performance of Object Oriented Programming implementation in
C in the embedded system programming. The results of the
experiment show that Object Oriented Programming
implementation in C adds significant complexity to the system,
although it gives almost the same memory allocation and
performance results as Object Oriented Programming
implementation in an object-oriented language such as C++.

Keywords: Digital Signal Processor (DSP), Object Oriented
Programming (OOP), C, Object Oriented Design, C++

1. Introduction

Object Oriented Programming (OOP) is a paradigm and
methodology for software development and design [2] based upon
the idea of breaking the complex software system down into its
various objects, combining the data and the functions that operate
on the designed entity. Even though the object-oriented approach is
known to introduce a significant performance penalty compared to
classical procedural programming [3], OOP has proved to be one
of the major steps towards more productive and systematic
software design [4]. In principle, any design could be realized
without OOP methodology but in complex software projects the
productivity and conceptual clarity of OOP typically far exceeds
the traditional approaches [4]. Therefore, OOP has become very
popular in the past years for software development and design.

As a consequence of the fast growing complexity and size of
embedded systems, the requirements for embedded software
development are changing [5]. The effort spent on developing the
system becomes more important, compared to the per-unit cost of

the device. It should become clear that OOP is a proper
methodology for digital signal processor (DSP) programming [4].
In addition, OOP is a good methodology in DSP research and
development as well.

Besides that, in embedded systems, ANSI C is the most
commonly used language for DSP programming [6]. C has the
advantages of high availability of compilers for wide range target
processors, a well-deserved reputation for run-time efficiency [7].
Therefore, the embedded system software developers have not
been very eager to adapt new technologies; especially the language
adoption was very slow. Nevertheless, OOP is both a general
methodology and a way of thinking, and a tool for programming
[4]. It is possible to design and write programs based on OOP ideas
without any specific OOP language, but if you choose correct
language, you will be rewarded with a straightforward design and
an even easier implementation [8]. Therefore, OOP features can
be implemented in any programming language, but some
languages are more suitable and flexible than others. One effective
disadvantage of present OOP languages is the reduction in
performance because of the object formalism. However,
optimizing compilers keep trying to minimize or eliminate the
overheads of the object-oriented languages [5].

Since C is commonly used in micro-controllers and it is
possible to implement OOP in C, most of the features of OOP can
be implemented via some techniques in C.

The goal of the paper is to supply the empirical memory
allocation and performance data, while the performance is usually
the major concern [9], to help the embedded system software
developers to consider OOP implementation in a procedural
language such as C. The second goal of the paper is to discuss the
effect of OOP implementation in C to the reliability of the
embedded system software.

2. Experiment

The experiment is done on TMS320C6418 of a custom design
board. TMS320C6418 is one of the new generation highest-
performance processors. TMS320C6418 has the operating
frequency of 500 MHz. “Optimization Level” option of the
compiler is set to “None” and “Opt. Speed vs. Size” option of the
compiler is set to “Size Critical”.

For the experiment, two designs are examined. First design is
Debounce example; a toggle button for a microwave is modeled,
which has the simple relations and simple implementation also
short code length. Second design is Queue/Cached Queue example
that has relatively complex relations, complex implementation and
longer code length.

Figure 1 and Figure 2 show the sample UML class diagrams of
Debounce and Queue/CachedQueue examples [7]. These designs

are implemented in C. Related code listings can be found also in
[7]. OOP features such as abstraction, inheritance, and
polymorphism can be implemented in a number ways in C.
Actually many C programmers have been using these fundamental
patterns in some form or another for years, often without clearly
realizing it [10]. However, one shall deal with some tricky rules
and techniques to implement OOP features in C such as embedding
function pointers within the structs [7] and void pointers.

Timer

= delay(delayTi e unsicned intivoid

T

Eutten

= devicaStater_neigred chzr=0 ButtonDriver

H skStasunsigred char=0

= getSatet jvaid ‘ 1 u-s gnzd char=0

[sencEvent(; void

5 P 1s70i wid

| @R sleasa{) voic

[bacL ghifoffon Unzignes c-ar}voiz

[eveneceive):void

1

A7

MicrowaeEm ter

[startEmiing(void
i stop=ming()voic

Figure 1. Debounce Example Model [7]

As a result of the experiments, Debounce example occupied
3628 16 bit — Words (Word) and Queue/CachedQueue example
occupied 32294 Word total memory.

Table 1. Memory Allocation for the implementations

Memory Allocation (Word)
oopP Debounce Queue
Implementation Example CachedQueue
Example
InC 3628 32294
In C++ 3692 31574

The same designs are implemented in an object-oriented
language, C++. The code is intentionally written as simple as
possible. These implementations are occupied 3692 Word and
31574 Word total memory, respectively.

Queue

Hszeit

M headirt

Htailint

H buferint

i insert{kint)void N

d remove{)int .

HgetSizefyint AN

Hinitgvoid .

i CleanUp(pvoid \\

AN
\‘\
CathedQuee
Hferamecha
[bufferint
Hheadint
Hsieint
Htailint
1

Hinsetrvoid
removef)int
Hoersizeint
shifvoid
Hioad) voie
HgeF lenemefchar
HsetFlename{rame charvoid
init(yvoid
HCkenlpfyvoid

Figure 2. Queue/CachedQueue Example Model [7]

Note that, implementations were designed and coded carefully
to make the comparison is fair. Complete results of the
implementations are shown in Table 1.

In the second part of the experiment, the simple test program
that simulates a single button press is run for Debounce example
implementations. Then, the execution times of the implementations
are recorded as Table 2.

Table 2. Execution Time for Debounce Example

oop Execution Time
Implementation Clock Cycle Time (usec)
InC 353 0,706
In C++ 372 0,744

In addition, another simple test program [7] that shows
elements inserted and removed into and from the queue is run for
Queue/CachedQueue Example implementations. Then, the
execution times of the implementations are recorded as Table 3.

Table 3. Execution Time for Queue CachedQueue Example

(0104 Execution Time
Implementation Clock Cycle Time (usec)
InC 251601 503,202
In C++ 250922 501,844

Meanwhile, it is more meaningful not to ignore the effect of the
compiler for the experiment. The performance of a DSP platform
(DSP and compiler) depends upon the quality of the compiler [11].
Besides that, the performance of a compiler varies with the
structure of the application and the programming style.

Table 4. Memory Allocation after the optimization

Memory Allocation (Word)
oopP Debounce Queue
Implementation Example CachedQueue
Example
InC 3244 31626
In C++ 3276 31126

In the third part of the experiment, the above experiment is
repeated by maximizing optimization levels of the compiler for
each case to clarify the effect of the compiler to the experiment.
Table 4 shows the memory allocation results for the
implementations after optimization. In addition, Table 5 and
Table 6 show the execution time results for the implementations
after the optimization.

Table 5. Execution Time after the optimization for
Debounce Example

oop Execution Time
Implementation Clock Cycle Time (usec)
InC 228 0,456
In C++ 245 0,490

Table 6. Execution Time after the optimization for
Queue/CachedQueue Example

oop Execution Time
Implementation Clock Cycle Time (usec)
InC 250339 500,678
In C++ 250377 500,754

3. Discussion

Results of the experiment show that OOP implementation in C
comes with almost same memory allocation, and execution time as
OOP implementation in C++. With the above results, one might be
convinced that OOP implementation in C shall be used in
embedded systems because OOP in C does not have any overhead
compared to OOP in C++. Actually, learning to use object-oriented
techniques in C will not only make it easier to write your own
objects in C, it will make it easier to understand the many toolkits
and libraries that use these concepts [12]. However, Objects
implemented in C are complex and the code becomes harder to
debug and maintain. Even though, a tool is used to generate C code
automatically from object-oriented design, implementations are
hard to modify and maintain. The inclusion of object-oriented
concepts into traditional languages sophisticated them, in that
programmers had the flexibility to use or not to use the object-
oriented extensions and benefits [13]. Although these languages
became more complex, those extensions enabled programmers
who had considerable experience with those traditional procedure
languages to explore incrementally the different concepts provided
by the object-oriented paradigm [13]. Nevertheless, when using a
procedural language in OOP such as C, programmers had to
exercise more discipline than when using a pure object-oriented
language because it was too easy to deviate from sound object-
oriented principles [13]. A powerful feature of object-oriented
languages is the inheritance that allows classes to be arranged in a
hierarchy and inherit behavior from classes above them. However,
the danger in trying to force object-oriented concepts into a
language that does not provide inheritance is that weird
constructions may be produced, impairing software development,
and jeopardizing the quality of the resulting software [13].
Specially, the polymorphism results in more errors and OOP is
more difficult to recognize and understand, but again if a
procedural language is used with an object-oriented design [15].
Actually, in embedded systems reliability is essential; indeed,
embedded software may control a safety- or security-critical
system where an error can have catastrophic consequences [8]. In
addition, complexity is one of the important attribute of reliability
and higher complexities increase the probability of error
occurrences and decreases reliability of the software [17].

Alongside the recognized advantages, there seems to be a
general feeling among procedural language programmers that
object-oriented languages can result in inefficient code when
compared with coding the same application in a procedural
language. Like all such general knowledge, this need not be true; it
all depends on which object-oriented language features you use
and how you use them [14]. There are advantages of using an
object-oriented language [16]. Object-oriented languages are able
to distinguish an object’s internal, add user-defined types to
augment the native types, create new types by importing or reusing
the description of existing types and localizes responsibility for
behavior. In addition, the change of approach that comes with
object orientation provides improved debugging and maintenance.

Meanwhile, C++ offers the embedded programmer some
striking advantages over C [16]. It can be used in place of C
without change for most applications. Nevertheless, most running
C code compiles and runs as C++ code. It extends C by including
additional critical features that support object-oriented and generic
programming. C++ also embraced generic programming using
templates. It remedies some of C’s defects such as relying on the
preprocessor, lack of type-safety, unrestricted casting. C++ also
provides more scoping constructs and allows namespace scope and
nested class scope, both unavailable in C.

As a point, C++ is a superset of C. This also demonstrates that
moving to C++ is not an all or nothing event. Actually, the C

programmer is nearly a C++ programmer. Moving from C to C++
is relatively simple and does not require a break with existing C
practice [16]. It is also possible to choose among the C++ features
those that are useful in the application and ignore others at the
beginning.

Therefore, in complex software, the use of OOP in an object-
oriented language such as C++ will lead to cleaner architecture, a
better reuse of code, and one will start to get comparable timings
or even a significant gain over a code with written in C.

Specially, real-time embedded applications require the features
for promoting reliability, maintainability, reusability, and other
broad software engineering goals such as compile-time type
checking, support for encapsulation and information hiding,
namespace management parameterizable templates and object-
oriented programming features [8].

In addition that the supporting evidence was found that
programmers produce more maintainable code with an object-
oriented language as C++ than a standard procedural language as C
[15].

However, DSP manufactures announce new generation chips,
almost every year, offering improved performance, reduced code
size and more on-chip memory to help the developers to
implement their embedded systems in object-oriented languages
with less memory and performance overheads.

Finally, I also keep in my mind that the effect of the compiler
for my experiment. The results of third part of the experiment did
not change the direction of previous results. Furthermore, I believe
that effect of the compiler do not change the conclusion. However,
surprisingly I have had almost the same optimization ratios for the
implementation in C and C++ in terms of execution time and
memory allocation contrary to common belief of C++ programs
are harder to optimize than programs written in languages like C
[15]. It also shows that the sophisticated compilers try hard to
optimize the performance of object-oriented languages.
Optimization percentages of the compiler for the implementations
are shown in Table 7 and Table 8, respectively. Note that,
Debounce example has higher optimization ratios in terms of
memory allocation and execution time because it has short code
length and the simpler test program compared to
Queue/CachedQueue example.

Table 7. Optimization Ratios for Debounce Example

oor Optimization Optimization
Implementation | Execution Time | Total Memory
InC % 3541 % 10,58
In C++ % 34,13 % 11,26

Table 8. Optimization Ratios for Queue/CachedQueue

Example
oor Optimization Optimization
Implementation | Execution Time | Total Memory
InC % 0,50 % 2,06
In C++ % 0,21 % 141

Future work would deal with other procedural languages in
order to generalize the discussion to OOP in procedural languages.
In addition, future work would deal with power consumption as it
is done with memory allocation and execution time.

4. Conclusion

According to the recent studies, it has been shown that OOP is a
good methodology in embedded system research and development.
ANSI C still is the most commonly used language for embedded
system programming. Besides that, most of the features of OOP
can be implemented via tricky techniques in C. However, OOP
implementation in C adds the significant complexity to the
implementations without any memory allocation and performance
advantages. Nevertheless, the higher design and coding
complexities increase the probability of error occurrences and
decrease reliability of the software. Moreover, the new generation
DSPs and compilers keep helping the developers to gain the
advantages of object-oriented languages by improved performance,
more on-chip memory, reduced and optimized code size.
Consequently, there is no doubt that most new software systems
will be object-oriented and will be implemented in object-oriented
languages.

Acknowledgment

I would like to thank my colleagues and the anonymous reviewers
for their helpful comments and suggestions.

References

[1] TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide:
August 2006.

[2] M. Karjalainen, 1992. Object-Oriented Programming of DSP
processors. a case study of QuickC30, in International Conference on
Acoustic, Speech and Signal Processing. ICASSP-92 Vol 5, 1992

[3] A. Chatzigeorgiou, 2003. Performance and power evaluation of C++
object-oriented programming in embedded processors, Information
and Software Technology 45, p. 195-201.

[4] M. Karjalainen, 1990. DSP Software Integration by Object-Oriented
Programming: a case study of QuickSig. IEEE ASSP Magazine,
1990, p. 21-31.

[5] T. Afacan, 2011. State Design Pattern Implementation of a DSP
Processor: A Case Study of TMS5416C, Proceedings of the IEEE
Symposium on Industrial Embedded Systems (SIES), 2011, P.67-70.

(6]

(7]

(8]

(]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

D. Batten, S. Jinturkar, J. Glossner, M. Schulte and P. D'Arcy, 4 New
Approach to DSP intrinsic Functions. Proceedings of the 33rd Annual
Hawaii International Conference on System Sciences, Jan. 2000,
pp-908-918.

B. P. Douglass, 2011. Design Patterns For Embedded Systems in C.
Newness, Burlington, MA, USA,

R. Philippe, H. Thomas, 2007. Programming Embedded Systems,
Seminar, Embedded Systems, WS 06/07, Leopold-Franzens-
University of Innsbruck Institute of Computer Science.

Erh-Wen Hu, Cyril S. Ku, Andrew T. Russo, Bogong Su and Jian
Wang, 2009. Performance Analysis of Digital Signal Processors
Using SMV. Benchmark in International Journal of Signal Processing,
5;3,2009, p.223.

M. Samek, 2002. Pratical Statecharts in C/C++. CMPBooks, San
Francisco, CA, USA.

M. Genutis, E. Kazanavicius, O. Olsen, 2001. Benchmarking in DSP,
ISSN 1392-2114 ULTRAGARSAS, Nr.2 (39), 2001.

G. Lebl, 2000. Object Oriented Programming in C, Linux Magazine,
October 15%, 2000, http://www.linux-mag.com/id/628/.

L. F. Capretz, 2003. A Brief History of the Object-Oriented Approach,
ACM SIGSOFT, Software Engineering Notes. Vol. 28, No. 2, March,
2003 pp.1- 10.

A. Lundgren, 2010. The Inefficiency of C++, Fact or Fiction?,
EETimes Tech Papers, White Paper, June 2010.

S. Henry, M. Humphrey, Science, Virginia Polytechnic Institute and
State University, 1988. Comparison of an Object-Oriented
Programming Language to a Procedural Programming Language for
Effectiveness in Program Maintenance, Technical Report TR-88-49,
Computer Science, Virginia Polytechnic Institute and State
University, 1988.

L. Pohl, 2001. C++ by Dissection, Addison Wesley, USA.

A. Yadav, R. A. Khan, 2009. Measuring Design Complexity — An
Inherited Method Perspective, ACM SIGSOFT, Software
Engineering Notes. Vol. 34, No. 4, July 2009, pp.1- 5.

Dynamic Code Generation: an
Experiment on Matrix Multiplication

Damien Couroussé

Henri-Pierre Charles

CEA-LIST, Lastre laboratory
firstname.surname@cea.fr

Abstract

In this paper we detail the implementation of a typical CPU-bounded
processing kernel: matrix multiplication. We used deGoal, a tool
designed to build fast and portable binary code generators. We
were able to outperform a traditional compiler: we obtained a
speedup factor of 2.22 and 1.86, respectively for integer and floating-
point multiplication with 256 x 256 matrices. Furthermore, code
specialization on the data to process allows us to further increase the
performance of the multiplication kernel by a factor of more than
20 in favorable conditions.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages): Processors—Translator writing systems and compiler gen-
erators; C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures—Parallel processors

General Terms Performance, Design, Algorithms

Keywords dynamic code generation, run-time optimization, em-
bedded systems, parallel computing

1. Introduction

Since the early beginning of computer history, one has needed
programming languages as an intermediary translation between
algorithms and machine-readable instructions. Typically, from a
simple viewpoint, running an algorithm on a computer requires the
following steps: (1) the developer translates the algorithm into a
source file containing programming language instructions, (2) a
compiler translates these programming language instructions into
machine code, (3) the processor reads and executes the machine
instructions, loads the input data and produces the data results.
Because compilation is performed before the program is run, it
is not possible to produce machine code on the basis of knowledge
of the execution context, which can be only known at run-time. This
means that one has either to assume about the characteristics of
the execution context (and to provide verification mechanisms), or
to add extra instructions to adapt the program behavior. The other
way to deal with this problem is to generate the program’s machine
code at run-time, after the execution context is known. This can be
achieved by instruction translation or compilation at run-time [1]. A
well-known example is the Java programming language, designed to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES 2012 June 12-13, 2012, Beijing, China
Copyright (© 2012 ACM [to be supplied]...$10.00

enhance application portability: Java source code is written without a
priori knowledge of the platform that will execute the final machine
code, thanks to a virtual machine that does the match with the
machine instructions supported by the target architecture.

Run-time compilation is also useful for large-scale parallel com-
puter systems, where an application component can be populated
on a lot of processing elements. This issue is applicable to all large-
scale multi-processor platforms: from High Performance Computers
in data centers to multiprocessor Systems-on-Chip (MPSoCs) in
future embedded devices. In this case, one would need either (1) a
generic implementation that one can parametrize at instantiation but
that will suffer from the performance overhead brought by a generic
implementation, or (2) to modify and re-compile the component
dynamically at run-time after one knows where it will be finally
executed.

deGoal was designed with the two issues described above in
mind to provide application developers the ability to implement
application kernels tunable at run-time depending on the execution
context, on the characteristics on the target processor, and further-
more on the data to process [2]. In Just-In-Time compilers (JITs)
all the application code is generated at run-time, which allows to
perform optimizations covering the whole scope of the application,
but also incurs a strong performance overhead. Usually in process-
ing applications, most of the execution time is spent in a very small
portion of the whole application source code, which is most of the
time a computation-intensive task also called kernel. We assume
that improving the performance of kernels can leverage the overall
application performance. Therefore, the idea using deGoal is to
embed ad hoc run-time code generators in a software application.
Each code generator is specialized to produce the machine code of
one application kernel. This enables the production of very fast code
generators (10 to 100 times faster than common JITs).

The rest of this paper is organized as follows: section 2 introduces
the core idea of deGoal and how this tool can be integrated in a
larger-scale application, section 3 details the use of our tool on
matrix multiplication for the processors of a MPSoC, section 4
details the results achieved, and section 5 presents related works.

2. Overview of deGoal
2.1 Kernels and compilettes

The two categories of software components around which our code
generation technique is built are called kernels and compilettes:

Kernel A kernel is a small portion of code, which is part of a larger
application, and which is most of the time under strong performance
constraints; our technique focuses on the optimization at run-time
of these small parts of a larger application in order to improve the
kernel’s performance. In the context of this paper, good performance
is understood as low execution time and/or low memory footprint.

.cdg ole static| |runtime
Iy binary binary
- degoal ilett tt
high-fvel ompr e ==
GEY kernel

- - -

developer| degoaltoc ¢ compiler ¢ompilette RUN TIME

REWRITE TIME STATIC data adaptation)
(source to source) COM‘Il?Ilr\IZ/ETION

Figure 1. deGoal workflow: from the writing of application’s
source code to the execution of a kernel generated at run-time

Compilette A compilette is designed to generate the code of
kernels at run-time. It can be understood as a small compiler that
is executed at application’s run-time. We use the term compilette
to underline the fact in order to achieve very fast code generation,
this small run-time compiler does not embed all the optimization
techniques usually carried out by a static compiler. The binary code
of a compilette is generated during the static compilation along with
the rest of the application.

Compilettes are described using a mix of standard C and of a
high-level ASM language [2], which describes the instructions that
will be generated at run-time. However, on the contrary to common
ASM languages, it is possible to parametrize these instructions
with values known at run-time, and to use vector variables. More
precisely, it is possible to manipulate vectors of registers, whose
size will be determined at the time of code generation, when the use
of registers in the programming context is known.

2.2 Workflow of code generation

The building of an application using deGoal is illustrated in figure 1
and explained below:

Writing the source code (application development time) This
task is handled by the application developer, and/or by high-level
tools. The source code of compilettes is written in specialized . cdg
files, while the rest of the application software components are
written using a standard programming language, such as C.

Generation of C source files (rewrite time) This step consists in a
source-to-source transformation: the . cdg source files mixing high-
level ASM instructions and standard C are translated into standard
C source files by degoaltoc, which is one of deGoal tools. At
this phase architecture-dependent features can be introduced in
the C source files generated, for example register allocation and
vectorization support.

Compilation of the application (static compilation time) The
source code of the application now consists in a set of standard C
source files, including the source code of the compilettes. The binary
code of the application is produced by a standard C compiler. This
step is the same as in the development of a standard C application.

Generation of kernel’s binary code (run-time) At run-time, the
compilette generates optimized binary code for the kernel(s) to
optimize. This task can be executed on a processor that is different
of the processor that will later run the kernel. Furthermore, the
compilette’s processor and the kernel’s one do not necessarily need
to have the same architecture. A compilette can be run several times,
for example as soon as the kernel needs to be regenerated for new
data to process. We have detailed on figure 1 two particular inputs of
the compilette: data and hardware description. The originality of our
approach indeed relies in the generation of a binary code optimized
for a particular set of application data. At the same time, the code
generation is able to introduce hardware-specific features.

clear(C)
for (y=0; y < n; y++) {
for (x=0; x < q; x++) {
for (i=0; i < p; i++) {
Clx,yl = Clx,y] + Al[i,y] * B[x,il]
}

Figure 2. Reference implementation of the matrix multiplication
(in pseudo C code)

/* generation of the kernel’s code */
(kernel, v) = compilette(A, B, C)

/* compute matrix multiplication */
clear(C)
for (y=0; y < n; y++) {
for (i=0; i < p; i+=v) {
kernel(y, i)
}

Figure 3. optimized implementation of the matrix multiplication
using deGoal (in pseudo-code)

Kernel execution (run-time) The program memory buffer filled
by the compilette is run on the target processor (not shown in
figure 1).

3. Implementation of matrix multiplication

This section describes the implementation of a processing kernel
for matrix multiplication in order to illustrate the use of deGoal.
We describe first a reference implementation, which is statically
compiled with the platform’s compiler. We then describe two
improved implementations using deGoal: the first exploits matrix
properties such as matrix size, element size, and memory addresses;
the second exploits the values of matrix elements.

3.1 Reference implementation

Our aim is to perform matrix multiplication as described in equa-
tion 1, where a, b and c stand respectively for elements of matrices
[A], [B] and [C] of sizesn X p,p X gand n X ¢:

P
Vi € {1,...,n},Vj€{1,...,(]},0” :Zaikbk]’ (H
k=1
The reference implementation of this algorithm is illustrated
in figure 2. We used it as a reference implementation for our
experimental measurements.

3.2 First implementation in a compilette

A simplified overview of our implementation of the matrix multi-
plication using deGoal is illustrated figure 3. compilette is the
code generator that produces an optimized kernel function kernel,
which encompasses the inner-most loop from figure 2: it performs
a vector multiplication between a row in A and a column in B, and
accumulates the result into the corresponding element of C. The
code generated for kernel depends on the properties of matrices
A, B and C : row and column sizes, memory alignment and address
of the data in memory. These values are precomputed and propa-
gated into the instructions of kernel at code generation time. In
consequence, the only parameters needed by kernel are the row
and column numbers of matrix C.

clear(C)

// generate the kernel’s structure
(kernel_templ, v) = template_gen(A, B, C);

// process matrix multiplication
for (y=0; y < n; y++){
for (i=0; i < p; i+=v){
// specialize instructions on matrices’ data
kernel = data_gen(kernel_templ, A, y, i);
if (NULL != kernel)
kernel(y, i);
3

Figure 4. Implementation of the matrix multiplication (pseudo-
code) with code specialization on matrix values

This implementation of kernel is very similar to the reference
implementation introduced above, at the exception that

e a]] the constants describing matrix properties, which are known
at code generation time, have been propagated into the generated
code.

e loops are reordered to minimize the number of memory loads.
Considering the reference implementation of figure 2, we rear-
ranged the loops to minimize memory loads for matrix A: the
loop on x in done internally in kernel, and that the loop on
i is raised one level up (figure 3). In other words, this means
that once a line in matrix A is loaded, we compute all the related
elements in matrix C.

As we will show in the results section, these improvements alone
already contribute to a good improve performance.

3.3 Kernel specialization on matrix values

If the matrices to process are sparse or contain remarkable data
values, it is possible to further increase performance by specializing
the generated code depending on the element values of the matrix
to process (figure 4). This time, the code generation is split in
two phases: template_gen generates the global structure of the
processing kernel that is not likely to change upon data values in A.
At each processing loop, data_gen fills the kernel’s code upon data
values in the row vector to process in A. When there is nothing to
execute (for example, all matrix values in the current row in A are
null), data_gen returns NULL and we immediately move to the next
loop step.

This technique involves an extra overhead for code generation
because the kernel’s code at each step in the innermost loop, but, as
we will show below, this overhead can be compensated very quickly.

4. Experimental results
4.1 Target architecture

We target in this work the embedded platform called Platform 2012
(P2012) [6], under development by STMicroelectronics and CEA. It
is composed of multiple clusters connected through an asynchronous
network-on-chip allowing each cluster to have its own voltage and
frequency domain. Each cluster aggregates 16 cores dedicated to
processing, plus one extra core dedicated to task management. All of
the cluster processors are STxP70-4 cores from STMicroelectronics.

We have added support for the STxP70 to deGoal. The
STxP70-4 processor is a 32-bit RISC core. It comes with a variable-
length instruction encoding and a dual VLIW architecture allowing
two instructions to be issued and executed at each cycle. Two sets
of hardware loop counters are provided to enable loop execution at
maximum speed without cycle overheads due to software control.

The core processor contains an internal extension for integer multi-
plication, and an optional single-precision floating point extension
used in this experiment.

The P2012 SDK is delivered with a full toolchain for compiling,
debugging, profiling and simulation in functional and cycle-accurate
modes. Our experiment is based on the platform’s toolchain and on
the cycle-accurate simulator of the STxP70 core.

4.2 Experimental setup

‘We have evaluated our optimized version of the matrix multiplication
against the reference implementation described in section 3.1.

The reference implementation is compiled in -03. Loop un-
rolling, support of hardware loop counters and of the floating-point
extension are also enabled. The best performance was obtained with
an implementation close to the pseudo code described in figure 2.

The code generated by deGoal’s compilette does not depend on
compiler optimizations, because it is generated at run-time by the
compilette. Hence whatever the compiler optimizations selected, the
execution time of the generated kernel remains constant. Compiler
optimizations have however an effect on the performance of the
compilette, because it is statically compiled as a standard application
component. In our performance measurements, we have used the
same compiler options to compare the reference implementation
and our implementation using deGoal.

We have also exploited the VLIW extension of the STxP70-v4
core, using the appropriate compilation flags. On the compilette’s
side, VLIW support is integrated in the cdg pseudo-ASM language
of deGoal. As a consequence, it is not exposed to the developer
and the compilette is tailored to automatically exploit this feature as
soon as the processor supports it.

4.3 Measure of the code generation time

We have instrumented the compilette to measure the time spent
in code generation at run-time: code generation takes from 25 to
80 cycles per instruction generated. The speed of code generation
varies significantly, mainly because of instruction bundling, and
because of the extra computations done at the end of code generation,
for example computing the jump addresses. The best results are
achieved for unrolled loops without instruction bundling.

The code generation time is not taken into account in the speedup
results presented below, because it is not necessary to regenerate the
code for each matrix multiplication. As an indicator, code generation
represents 15 to 20 % of the execution time for a multiplication of
16 x 16 matrices, and less than 0,01 % for 256 x 256 matrices.

4.4 Performance of the processing kernels

Figure 5 illustrates the performance improvements achieved using
deGoal as compared to the reference implementation compiled
with full optimization, for two cases of code generation: using the
hardware loop counters provided by the STxP70 core (HW loop),
and fully unrolling the kernel’s code (unrolled). The speedup
factor s represents the reduction factor of the execution duration of
our implementation as compared to the reference implementation.
We calculate it as follows: s = ; (ij(er;Zu) , where t(ref) measures the
time execution of the reference implementation, ¢(degoal) the time
execution of the generated kernel.

Our compilette brings a good overall performance improvement:
when the matrix size is 256 x 256 elements, we achieve a reduction
of the execution time of 2.22 times for integer multiplication, and of
1.86 times for floating-point multiplication.

Figure 6 illustrates the speedup factor measured when using code
specialization on the data of matrix A, as presented in section 3.3.
We illustrate here the most favorable case where matrix A is the
identity matrix. In this case, the looped implementation shows a
huge speedup because of the instructions removed from the kernel

N
W

int, HW loop
int, unrolled
fpx, HW loop
fpx, unrolled

el

N
i

speedup factor
= N
o (=]

=
©

1.7
1.6
1.E' L L L
16 32 64 128 256
matrix size

Figure 5. Speedup factor measured, for integer multiplication
(plain line) and floating-point multiplication (dashed line), according
to the implementation described in section 3.2.

eo—e int, HW loop
¥—¥ int, unrolled
o o fpx, HW loop

201
¥ v fpx, unrolled

15

10

speedup factor

G16 32 64 128 256
matrix size

Figure 6. Speedup factor measured, for integer multiplication
(plain line) and floating-point multiplication (dashed line), according
to the implementation described in section 3.3.

when null values are met in matrix A. The unrolled version is not
efficient, considering the favorable experimental conditions, because
a part of the code generation is performed during kernel’s execution,
and code unrolling requires a lot more instructions to be generated.

5. Related work

There is an extensive amount of literature about dynamic compi-
lation, mainly related to Just-In-Time compilers (JITs) [1]. JITs
dynamically select the parts of the program to optimize without a
priori knowledge on the input code. This usually requires to embed
a large amount of intelligence in the JIT framework, which means
a large footprint and a significant performance overhead. In order
to target embedded systems, some research works have tried to
tackle these limitations: memory footprint can be reduced to a few
hundreds of KB [4], but the binary code produced often presents
a lower performance because of the smaller amount of optimizing
intelligence embedded in the JIT compiler [5].

The approach chosen in deGoal is similar to partial evaluation
techniques [3], which consists in pre-computing during the static
compilation passes the maximum of the generated code to reduce
the run-time overhead. At run-time, the finalization of the machine
code consists in: selecting code templates, filling pre-compiled
binary code with data values and jump addresses. Using deGoal
we compile statically an ad hoc code generator for each kernel to
specialize. The originality of our approach relies in the possibility
to perform run-time instruction selection depending on the data to
process [2].

Our approach allows to generate code at least 10 times faster than
traditional JITs: JITs hardly go below 1000 cycles per instruction
generated while we obtain 25 to 80 cycles per instruction generated
on the STxP70 processor.

6. Conclusion

We have shown that deGoal can easily compete with a highly
optimized code produced by a static compiler with little effort:
the code produced has better performance than a code statically
compiled with full optimization, and furthermore the quality of the
code produced with deGoal is consistent and does not depend on
compiler’s options. deGoal also allows to specialize the code of a
processing kernel for a particular set of run-time data, which is not
possible using a static compiler. We have shown that in favorable
conditions the performance increase can be huge.

In this paper, we have illustrated the benefits of using deGoal
to optimize processing kernels. Because deGoal is related to the
generation of machine binary instructions, its scope is actually
restricted to the processor. In order to use these optimization
techniques in large scale platforms, e.g. MPSoCs or HPC clusters,
one must rely on tools of higher level for the parallelization of
an application on multiple processing elements. Future work will
present how it is possible to integrate kernels optimized with
degoal’s compilettes in large scale applications.

deGoal is currently under active development. It is able to pro-
duce code for multiple platforms: Nvidia GPUs, ARM processors,
the STxP70, and other RISC processors under NDA.

Acknowledgments

The authors wish to acknowledge the support of the EU Commission
under the SMECY project (ARTEMIS Joint Undertaking under grant
agreement number 100230) in part funding the work reported in this

paper.

References

[1] J. Aycock. A brief history of just-in-time. ACM Computing Surveys, 35:
97-113, June 2003.

[2] H.-P. Charles. Basic infrastructure for dynamic code generation. In H.-P.
Charles, P. Clauss, and F. Pétrot, editors, workshop ”Dynamic Compi-
lation Everywhere”, in conjunction with the 7th HIiPEAC conference,
Paris, France, january 2012.

[3] C. Consel and F. Noé€l. A general approach for run-time specialization
and its application to C. In Proceedings of the 23th Annual Symposium
on Principles of Programming Languages, pages 145-156, 1996.

[4] A. Gal, C. W. Probst, and M. Franz. HotpathVM: an effective JIT
compiler for resource-constrained devices. In VEE 06, pages 144-153,
New York, NY, USA, 2006. ACM.

[S5] N. Shaylor. A just-in-time compiler for memory-constrained low-power
devices. In Java VM’02, pages 119-126, Berkeley, CA, USA, 2002.
USENIX Association.

[6] STMicroelectronics and CEA. Platform 2012: A many-core pro-
grammable accelerator for ultra-efficient embedded computing in
nanometer technology. In CMC Research Workshop on STMicroelec-
tronics Platform 2012, 2010.

The Static Analysis of Worst-Case Inter-Core
Communication Latency in CMPs with 2D-Mesh NoC

Yigiang Ding Wei Zhang
Electrical and Computer Engineering,Virginia Commonwealth University
{dingy4,wzhang4}@vcu.edu

Abstract location and the sending speed of the traffic from the target applica-
Network-on-Chip (NoC) is adopted to provide fast and efficient ;uon are h?rdl¥r_knfown before the f“?'“”?E; Second, the worst-case
communications in chip multiprocessors (CMPs), especially for Iatency 0 l;ra IC rom adtgrget appr:catlon not Ogly |ngluhdes the
many-core processors. However, dynamic processor allocatibn an '2€ncy dto be tr?ns_mltlte ; etr\]/ve(;enlt e sour(éebnohe and the destina-
job scheduling in CMPs make it hard to predict the traffic patterns tion node, but also includes the delay caused by the contention from

in NoC statically, therefore it is complex and challenging to analyze ©ther traffics of co-running applications in NoC. However, both dy-
the worst-case latency of the communications from a real-time namic processor allocation and job scheduling can lead to various

application executing on CMPs with NoC, which is important to Taffic patterns for possible co-running traffics, which are hardly

obtain the worst-case execution time (WCET) of the application. Predicted statically. Furthermore, some techniques used in NoC to
In this paper, we study the static analysis of the maximum value of 'MProve the average network performance, for example adaptive
the worst-case latencies of all possible communications in a CMp f0uting algorithms, make the analysis of the worst-case latency of

with a packet-switching 2D-Mesh NoC, which is called the worst- 1€ communications of a real-time application executed in CMPs
case inter-core communication latency (WICL). A basic approach With NOC, if not possible, quite complicated. .

is proposed to estimate the WICL of a 2D-Mesh NoC in the ideally . | Nere are some research works aiming at providing guaranteed
worst-case scenario. Our experiments show that the overestimatiorfiMing requirements for NoCs. Multiple techniques are proposed
is within 80%. In these works, including the support of special hardware mech-
anisms [4], using priority-based mechanisms [10], time-triggered
1. Introduction systems [7], AEthereal network [2], and time_division multip_le ac-

: cess [9]. Also some researchers have studied the analysis of the
Chip multiprocessors (CMPs) have become an attractive approachinter-core communication latency in NoCs. Fadi Sibai [11] cal-
to build high-performance multi-core real-time systems. In CMPs, culated the inter-core communication latency in NoCs with dif-
delays caused by wires dominate over those generated by gatesferent types of topology by accumulating the average latency to
which favors short and energy efficient links rather than long buses. pass each router on an inter-core communication path. S. Foroutan,
Therefore Network-on-chip (NoC) has become the best approach toet.al.[6] proposed to construct a reduced Markov chain model for
provide fast and efficient communications in CMPs, especially for each node of the inter-core communication path and recursively
many-core systems. use the local mean latencies to obtain the mean latency of the com-

The latency of the communication in NoC is a part of the exe- plete path. However, these works only consider the average-case
cution time of an application executing on CMPs with NoC. Also inter-core communication latency in NoCs. Furthermore, T. Fer-
as CMPs are used in the hard real-time systems, it is desirable torandiz et.al.[5] proposed a method to compute an upper-bound on
include the worst-case latency of communications in NoC into the the worst-case inter-core communication delay of a packet in a
analysis of the worst-case execution time of a real-time application. SpaceWire network (a special type of network-on-chip). It assumes
However, it is quite challenging to analyze the worst-case latency there is no queue (buffer) in the input links and estimates the upper-
of the communication in NoC for a real-time application running in bound of the latency to transfer a packet through a link depending
CMPs with NoC because of the following reasons: First, the traffic on the worst-case delay to wait for other packets to be transferred
characteristics of the target application can not be exactly known through this link before it. Y. Qian et. al [8] presented an analysis
before run-time. To be specific, as dynamic processor allocation is technique to derive per-flow communication delay bound. Based
usually adopted in CMPs, the core assigned to the target applica-on a network contention model, this technique employs network
tion is determined at run-time. So the source location in NoC of the calculus to first compute the equivalent service curve for an indi-
traffic from the target application could be any node in the NoC. vidual flow and then calculated its packet delay bound. However,
Also as the traffics from the target application are either between all these works are done based on the assumption that the traffic
the core and the memory or between two cores, both the destinationpatterns in a given NoC (like the number of flows, the speed, the

source and destination of each flow) are known a priori, and the
worst-case inter-core communication latency is calculated for each
known flow.

The static analysis of the WICL of a 2D-Mesh NoC can help
support the static WCET analysis of the real-time application exe-
cuting on a CMP which inter-core communications are based on the
NoC, where dynamic processor allocation and job scheduling lead
to the uncertainty of the traffic patterns in the NoC before run-time;

[Copyright notice will appear here once ‘preprint’ option is removed.] A basic approach is proposed to estimate the WICL of a homoge-

1 2012/5/9

neous 2D-Mesh NoC in case of the ideally worst-case scenario; it

first bounds the worst-case waiting delay in each router on the path router
of a traffic-flow from the worst-case traffic pattern of the ideally
worst-case scenario, which also defineswloest-case input chan-

nel contentiorand theworst-case output channel contentiona
router; then the worst-case latencies of all traffic-flows are calcu-
lated and sorted to find the maximum value which is considered as
the observed WICL of the NoC. And the traffic-flow with the WICL

is named as the worst-case traffic-flow of the 2D-Mesh NoC. weslouipul. channel

|suUBY Indino ujlou
[ﬁ"L\ yuou

west input channel

east output channel

2. TheWorst-case Inter-Core Communication
Latency

In our study, the topology of the NoC in CMPs is assumed to
be 2D-Mesh as shown in Figure 1. The NoC consists of multiple
routers, each of which is attached by a core with a link, and two
adjacent routers in the same row/column are connected by two
directed links. As shown in Figure 2, the core component of a

router is the crossbar switch, and in general there are one input
channel and one output channel connected with one side of theSaMe route, and these packets are sent from the source core at a
crossbar switch. For convenience, the directions of four sides of flxed/van(_)us speed. For a pa_lckgt, _the time during the transmission
the crossbar switch are named as North, East, South and West ir{)etween its source and destinatin is denoted apabket network
clockwise order. Also each input/output channel on each side is atency In a 2D-Mesh NoC, given the dete'rmlnlstlc routing algo-
connected with the input/output link attached to the router from n?hm, t]t‘f.e I]|(|nk bar_1dvx|/|dth and thefpacket Size, assumlngftlhekroute
the same direction. The NoC studied is based on packet switching©f @ traffic-flow I* includes a set of routerSet, and a set of links
mechanism [3], so each input channel has a buffer to queue thesetl' the packet _network_latgncy of a packein F can be repre-
incoming packets from the input link connected with it, while each s_ented by Equation 1 which includes the sum of the transmit Iate_n-
output channel only has the space for a packet transmitted currently¢'€S On all routers in the route and the sum of the transmit latencies
on the output link connected. In this paper, we assume the store-Of all links as well. Because the packet size and the link bandwidth
and-forward flow control [12] is used in the router using packet 2'¢ both fixed, the transmit latencis on the links for all packets in
switching, and the packets queued in the buffer of an input channel a trafﬂc-flovy are the same, 'and the' variation O.f the packet netwqu
are scheduled by the fifo scheduling algorithm. Iat_ency ofdlfferent_packets in a traffic-flow originates from the vari-
ation of the transmit latency in the routers which can be represented
by Equation 2. While the latency of routin@:(«+ing) and the la-
tency to pass the crossbar switéh.(;:.») are both fixed given a
specific configuration of the router, the waiting delay in the router
(Twait) Not only depends on the configuration of the router, such
as the flow control mechanism, the scheduling algorithm and the
buffer size, but also is affected by the traffic characteristics of other
concurrent traffic-flows with¥, because the resources in a router
are contended by the packets from all possible traffic-flows passing
it.

[auUeYo JndU| Linos
|BUuEYa INdNo Ynos

Figure 2. The architecture of the router in a 2D-Mesh NoC.

core

router ___

link ==

Network Latency of P = Z latency in Router;+
Router; ESet,
Figure 1. The architecture of the 2D-Mesh NoC in CMPs. > latency on Link,
Link;€Set;
As the latencies of the inter-core communications are an impor- Q)

tant part of the execution time of a real-time application running on
CMPs with a 2D-Mesh NoC, it is desirable to include the analysis . b
of the worst-case latency of the inter-core communication into the Latency in Ri for P = Trouting + Towiten + Twait (2)
static WCET analysis of the real-time application. However, The Although the packet network latencies of various packets in
static analysis of the WICL in a 2D-Mesh NoC is challenging be- a traffic-flow vary because of the various waiting delay in each
cause of the uncertainty of traffic characteristics in the NoC caused router at the route, the maximum of all packet network latencies
by the dynamic processor allocation and job scheduling applied in of the traffic-flow should be bounded and denotedtss worst-
CMPs. First, the source and the destionation of the inter-core com- case latency of a traffic-flavlhus if an inter-core communication
munications of the real-time application analyzed is hard to know of an application can be represented by this traffc-flow, the total
statically, because it can be allocated to any core in the CMP at latency of the inter-core communication in the worst-case can be
run-time even though job migration among the cores is not consid- estimated by the worst-case latency of this traffic-flow and the
ered, also it possibly communicates with any application allocated number of packets to be transmitted. It should be noted that the
to other cores at run-time; Second, the traffic characteristics of the estimation of the number of packets to be transmitted is out of
inter-core communications from other co-running applications be- the scope of this study. However the uncertainty of the processor
fore run-time as well. allocation for an application executing on a CMP with a 2D-Mesh
An inter-core communication can be described asa#ffic- NoC before run-time makes it difficult to know the traffic-flow
flow which consists of multiple packets traversing the NoC at the representing its inter-core communication statically, which could

2 2012/5/9

10

happen between any two cores. It is unsafe to use the worst-casavhich satisfies the worst-case contentions in both the input chan-
latency of any traffic-flow to estimate the total latency of the inter- nel and the output-channel. The variables used in the algorithm are
core communication of an application in the worst case. Hence it is explained from Line 1 to 10. As the packets from the same in-
necessay to bound the maximum value of the worst-case latency ofput channel/C; with P can exit the router either fror®C; or
any possible traffic-flow in a 2D-Mesh NoC, namely the worst-case other output channels (except the output channel in the same direc-
inter-core communication latency (WICL) of the 2D-Mesh NoC. tion with IC}), the worst-case waiting delay &f is calculated by

One the one hand, the foundation of the static analysis of the checking all output channels which passed by any packet fi@dm
WICL of a 2D-Mesh NoC is to explore the worst-case scenario For any output channe)C; passed by the packets frohd’;, the
where the worst-case network resource contentions happen undeworst-case delay foP to wait for the transmission of the packets
the possible traffic patterns in the NoC (eg. the overall traffic char- from other input channels can be represente@@@y — N ;) x T;
acteristics of the concurrent traffic-flows in the NoC). On the other as shown in Line 15 and 17 according to the worst-case output
hand, it should consider the effects from the configuration of the channel contention model. In general, the worst-case delay to wait
routers in the NoC, such as the flow control, the scheduling algo- for the transmission of the packets frohd; to OC; equals to
rithm, the routing algorithm, and the size of the buffer. It also as- (7 + T;- +T;) x N._; as shown in Line 17 according to the worst-
sumes that there is no packet loss during the transmission, becausease input channel contention model. Especially in caseQiagt
if any packet is lost, the worst-case latency of the traffic-flow which is OC}, the number of packets to wait for B¥is N;_j — 1 as shown
the packet is in should be considered as infinite, so the WICL must in Line 15 becausé is also counted iV, _;.
be infinite (or can not be bounded), which does not make sense for
the static WCET analysis of a real-time application. The 2D-Mesh Algorithm 1 Worst-case Waiting Delay Analysis
NoC studied in this paper uses two routing algorithms respectively: 1.5 “ine worst-case waiting delay of P in the router
X-Y routing [12] and Odd-Even (OE) routing [12], and store-and- 2: 1¢;: the input channel where P enters the router

forward flow control with fifo scheduling is used. i IC;: any input channel of the router

: OCy: the output channel where P exits the router

. OCj: any output channel of the router

. T: switching latency of a packet in a router

. T routing latency of a packet in a router

. Ty transmit latency of a packet through the link connected With;
. N¢_;: the number of flows exiting the router throughC'; from I1C

3. ldeally Wor st-Case Scenario

Assuming anN x N 2D-Mesh NoC withN? cores, it is possible
that there exist the maximuti? x (N2 — 1) traffic-flows simulta- t
neously in the NoC, in case that each core is multicastifig— 1 : Jbvefé};he total number of flows exiting the router througiC;

- 5 . . :
trafflc-flows to otherV T 1 cores respectlvely. It IS called as the 12: for eachOC; except the output channel in the same direction Wifly do
ideally worst-case traffic patteriThe path of a traffic-flow under ~ 13: it N, ; >0then

B
RBoo~Nourw

a deterministic routing algorithm is fixed, and it includes multi- 14: if OC; is OC, then

ple routers and the links connected with them. Given a number of +2: dseDw +=(Ts + Tr + T1) X (Neyj — 1)+ (N; — Nejy) x Ty
traffic-flows, the number of traffic-flows passing a link, the input 77: D +=(Ts + T + T1) X Noj + (N; — Nog) x Ty
channel and the output channel connected with the link can be cal-18: end if

culated and is called as thiffic-flow weightof these entities. In 190 endif

the ideally worst-case traffic pattern, the number of traffic-flows g(l’f f;‘t:‘r’: I

passing an entity reaches the maximum value which is called as the5: o4
worst-case traffic-flow weight dhis entity.

As mentioned in Section 2, the packet network latencies of the
packets in a traffic-flow vary because of thwaiting delayin the
router. Therefore the worst-case latency of a traffic-flow happens
with the worst-case waiting delay in each router on its path in case
of the worst-case traffic pattern. The worst-case waiting delay of a
packetP from a traffic-flow F' in a routerR happens if the worst-
case contention happens when this packet passes the router. Thel. Calculate the path for each traffic-flow under the ideally worst-
worst-case contentions can be classfied into two aspects as follows: c_ahse traffic pattern according to a deterministic routing algo-

rithm;

2. Calculate the worst-case traffic-weight of all input channels and
output channels in each router of the NoC;

By integrating the worst waiting delay of a packet of a traffic-
flow in each router on its path into Equation 1 and Equation 2, the
worst-case latency of the traffic-flow can be calculated. Therefore,
the WICL of a 2D-Mesh NoC in the ideally worst-case scenario
can be estimated by the basic approach as followings:

1. Theworst-case input channel contention: if P entersR from
the input channel’;npu¢, aNdCinpu: is in the state of the worst-
case traffic-flow weight;,, .., which means there ai&’;,, ..

packets including? in the buffer ofC},, ...+ from all traffic flows 3. Calculate the worst-case latency of each traffic-flow under the

passingCinput, P is transmitted after the transmission of all ideally worst-case traffic pattern;

otherWinpue-1 packets; 4. Sort the worst-case latencies of all the traffic-flows, and the
2. Thewor st-case output channel contention: if P exits R from maximum latency is considered as the WICL of the NoC.

the output channeC,uiput, and Coutpur iS in the state of

the worst-case traffic-flow weight,..p.:, which means there 4 Evaluation M ethodol ogy
are Woutpur packets includingP requiring the transmission .) . . .
from Cowipue from all traffic flows, P is transmitted after the [N order to validate the basic approach, an analyzer is built to esti-
transmission of all OtheiVy¢pui-1 packets; mate the WICL of a 2D-Mesh NoC, and the NoC simulator Nirgam

[1] is extended to support the simulation of the ideally worst-case
Besides the worst-case contentions, the estimation of the worst-scenario. In addition, the simulator adopts some intermediate re-
case waiting delay for a packet from a traffic-flow differs by us- sults outputted from the analyzer,which is the buffer size of the
ing different flow control mechanisms and packet scheduling algo- input channel of the routers.
rithms. In case of store-and-forward flow control and fifo schedul- The latency is measured in CPU cycles; the packet size is set
ing, the worst-case waiting delay for a packefrom a traffic-flow as 5 bytes and the bandwidths of all links are set as 5 bytes/cycle.
Fin a router on its path can be estimated following Algorithm 1 The network size ranges frotnx 2,3 x 3,4 x 4,5 x 5,8 x 8 to

3 2012/5/9

11

] . X-Y routing larger than those in X-Y routing, because OE routing does not lead
size | estimated| observed| estimated/observed to the shortest path for a traffic-flow, but X-Y routing does.
2 X2 27 25 1.08
3 %3 133 114 1.17)
ix4 406 299 136 6. Conclusions
5 X 5 977 63 153 . . .
Sx38 5067 3456 176 Although NoC can provide fast and efficient inter-core communica-
10 x 10 14464 8016 1.80 tions to real-time systems, it brings new challenge to WCET anal-

ysis of real-time applications running on CMPs. It is desirable to

Table 1. the comparison of the WICL of a 2D-Mesh NoC using statically obtain the worst-case latency of the inter-core commu-

X-Y routing in both estimated scheme and observed scheme with nications of the applications, which is difficult because of the un-
different network sizes, which is measured in cycles certainty of the traffic pattern before run-time brought by dynamic

processor allocation and job scheduling in CMPs. In this paper, a
basic approach is proposed to estimate the WICL of a 2D-Mesh

OE routing NoC with two routing algorithms in the worst-case scenario, and it
size estimated | observed | estimated/observeq can estimate the WICL safely but not tightly according to the exper-
2x2 31 28 111 imental results. In the future work, we plan to study an enhanced
ax3 gig égi i'ié approach to estimate the WICL of a 2D-Mesh NoC more accu-
555 3190 5048 156 rately in a realistically worst-case scenario. Also, we would like to
§x8 33924 18256 1.85 explore the WICL analysis for applications with static task-to-core
10 x 10 | 122444 | 65472 1.87 mappings.

Table 2. the comparison of the WICL of a 2D-Mesh NoC using References
OE routing in both estimated scheme and observed scheme with [1] Nirgam: A simulator for noc interconnect routing and apption
different network sizes, which is measured in cycles modeling. http://nirgam.ecs.soton.ac.uk/home.php.

[2] K. Goossens, J. Dielissen, and A. Radulescu. AEtherealvbirk on
Chip: Concepts, Architectures, and Implementations. In IEERign

size estim);t\édrou?)r;gerved estim(a?tléczoumierved and Test of Computers. September-October, 2005.
2% 2 3 3 3 3 [3] W. Dally and B. Towles. Route packets, not wires: on-ciniggrcon-
3% 3 5 5 7 7 nection networks. In DAC, 2001.
4x4 7 7 10 10 [4] J. Diemer and R. Ernst. Back suction: Service guarani@elatency-
5 x5 9 9 17 17 sensitive on-chip networks. In ACM/IEEE International Syoajum
8 X 8 15 15 37 37
10 x 10 19 19 55 55 on NOCS, 2010.
[5] T. Ferrandiz, F. Frances, and C. Fraboul. A method of coatjmrt
- - - for worst-case delay analysis on spacewire networksIndtustrial
Table 3. the number of hops in the worst-case traffic-flow in both Embedded Systems, 2009. SIES '09. IEEE International Syumo
estimated case and observed case with different network sizes on, pages 19 —27, july 2009.

[6

—

S. Foroutan, Y. Thonnart, R. Hersemeule, and A. Jerrayanatkov
. . . chain based method for noc end-to-end latency evaluatioRarallel
10 x 10. The router uses X-Y routing and OE routing respectively, Distributed Processing, Workshops and Phd Forum (IPDPS®)0
and both routing and switching are assumed to cost 1 cycle. The IEEE International Symposium ppages 1 —8, april 2010.

size of the buffer in each input channel is set to the total size of

multiple packets, which equals to the maximum of the worst-case [7] . Paukovits and H. Kopetz. Concepts of switching in thaet

triggered network-on-chip. IEmbedded and Real-Time Computing

traffic-weight of the input channels of a given 2D-Mesh NoC. Systems and Applications, 2008, RTCSA '08. 14th IEEE latiemal
Conference oypages 120 —129, aug. 2008.
5. Experimental Results [8] Y. Qian, Z. Lu, and W. Dou. Analysis of worst-case delayubds

. . for on-chip packet-switching networksComputer-Aided Design of
As shown in Table 1 and Table 2, the estimated WICL of a 2D- Integrated Circuits and Systems, |IEEE Transactions29{5):802 —

!\/Ietf]h l_\cIjOC”is Iargetr than the ob_serg/ed one f)c()rYeacht_netwo:ijiée 815, may 2010. ISSN 0278-0070.
In the ideally worst-case scenario by using 2-Y routing an [9] J. Rose, P. Eles, Z. Peng, and A. Andrei. Predictabletaase execu-

routing re_spectlv_ely; .AS it is possible that the esnmated worst- tion time analysis for multiprocessor systems-on-chip Electronic

case traffic-flow is different from the observed one, in order to Design, Test and Application (DELTA), 2011 Sixth IEEE Inggional

verify the worst-case traffic-flow estimated by the basic approach, Symposium arpages 99 —104, jan. 2011.

Table 3 compares the number of hops in the worst-case traffic-flow 10] Z. Shi and A. Burns. Real-time communication analysis forchip

between estimated and observed for each network size and eac networks with wormhole switching. IRroceedings of the Second

routing algorithm. The results demonstrate that the basic approach ACMI/IEEE International Symposium on Networks-on-CINOCS

can safely bound the WICL of a 2D-Mesh NoC with both X-Y '08, 2008.

routing and OE routing in the ideally worst-case scenario. [11] F. Sibai. Resource sharing in networks-on-chip of éargany-core
However, the estimated WICLs from the basic approach are not~ * embedded systems. Rarallel Processing Workshops, 2009. ICPPW

accurate comparing with the observed ones. The overestimation '09. International Conference gipages 513 519, sept. 2009.

ma_'nly comes from the V_/ors_t-case all-to-all traff_lc pattern, and [12] B. T. William J. Dally. Principles and practices of interconnection

strictly worst-case contention in a router assumed in the worst-case " networks Morgan Kaufmann, 2004.

scenario. With the increase of the networ size, it is more difficult

to achieve these two worst-case conditions in a 2D-Mesh NoC

and each router in it in the simulation. So the overestimation from Acknowledgments

the estimated results increases if the network size is enlarged. In

L . . . S . This work is partially supported by NSF grant CCF 0914543.
addition, the WICL as well as the overestimation in OE routing is partialy stpp Y g

4 2012/5/9

12

Adaptable and Precise
Wor st Case Execution Time Estimation Tool

Vladimir-Alexandru Paun

UEI, ENSTA ParisTech
Paris, France

paun@ensta-paristech.fr

Abstract

Real-time systems are everywere. When they are integrated i
safety-critical systems, the verification of their propestbecomes
a crucial part. Besides the growth in complexity of the endeed
systems, platforms are getting more and more heterogenBets
ing able to validate their non-functional properties is enptex and
resource consuming task. One of the main reasons is thatntiyrr
available solutions focus on delivering precise estinmatfdough
tools that are highly dependent on the underlying platfomina
order to provide precise and safe results, the architeafitbe
system must be take into account. In this project we addheset
issues by developing a prototype that maintains a good ¢é\m@k-
cision while being adaptable to a variety of platforms byssating
as much as possible the worst case execution time estinstige
from the hardware modeling aspects.

General Terms Hard Real-Time Systems, precision, safety, adapt-
ability

Keywords WCET, Abstract State Machine, Symbolic Execution

1. Introduction

With regard to the respect of the timing constraints, reaktsys-
tems are classified in two categories: hard real-time sysighe
non respect of a deadline can lead to catastrophic conseegien
and soft real-time systems (missing a deadline can caugerper
mance degradation and material loss). We analyze hardineal-
systems that need precise and safe determination of the gazs
execution time (WCET) bounds that are crucial in the ceetifan
process. Traditionally two approaches are used, namelgrdiyn
and static methods [1]. We only consider the latest as dymami
methods, in the traditional sense, fail to deliver safenestions
for modern platforms that contain, for example, pipelinesache
memories and tend to greatly underestimate the WCET.

In order to give a safe estimation of the WCET, all the interac
tions and reachable states of the system must be analyzaeior o
approximated, hence the need of an analysis that takesdotaat
the exact underlying architecture. We choose to separateiels as
possible the modeling part from the analysis part in ordectoeve
the flexibility needed to adapt to new hardware.

Permission to make digital or hard copies of all or part o thiork for personal or
classroom use is granted without fee provided that copesatr made or distributed
for profit or commercial advantage and that copies bear dtiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’12 12-13 June, Beijing.

Copyright(© 2012 ACM [SAGEM DS]. .. $10.00

13

Bruno Monsuez

UEI, ENSTA ParisTech
Paris, France

monsuez@ensta-paristech.fr

In our approach we start from the system’s model and theyinar
that will be executed on the final platform. An extension o th
Symbolic Execution (SE) [2], theonjoint SE, will generate all
the reachable states of the processor, under the superaéia
prediction module that will fusion identical and similar states in
order to contain the state space explosion and give de¢gjésding
the global precision loss of the WCET estimation.

For the processor model we choose to use a model based on
the Abstract State Machines (ASMs). The major advantages-of
ing ASMs for the processor modelings can be summarized as fol
lows: shortness of description (e.g. 200 lines for the ARNMYcps-
sor [3]), readability of the specification, cycle accuraamgceptable
simulation speed and the ease of conception (the ASM Refimeme
Method - piecemeal decomposition of a system into constitue
parts which are treated separately to manage complexig/ASM
refinements can then be verified using generalized forwandlak
tion for example [4]).What further differentiates the AShbdel is
the possibility to prove its correctness using several &rerifi-
cation approaches (e.g. by model checking, [5] based on 8id A
Workbench, [6], a comprehensive tool environment supportine
development and computer-aided analysis and validatiohSdf
models). Daho et all. use TLA+ logic for the deductive vesfion
of ASMs in [7].

In the following we first take a look into the state of the art
concerning timing analysis and we continue with the desorip
of the high level architecture of our tool. Subsequently aketa
closer look into the formal model used to simulate the hardwa
that gives us the edge in the adaptability of our tool folldviay a
presentation of the WCET estimation steps and the transfioms
needed to contain the combinatorial explosion.

2. Related works

Many of the available timing analysis tools show a list of qati-
ble hardware and present each new platform taken into atesun
a new feature. OTAWA, introduced by Casse and Sainrat [&], is
toolbox designed to enable the implementation of resedgd a
rithms that are combined in order to compute estimationsef t
WCET. Their abstraction layer separates the analysis fhantar-
get hardware and the instruction set architecture. The fitleeo
parametrized model of a generic platform helps thus adishgss
variety of architectures. However, the model seams to laekip
sion as it fails to capture the precise behavior of the ptatfaAb-
sint’s a~3 tool determines the WCET through several phases, as
we can see in [9] and [10]. It uses abstract interpretatiortte
value analysis, the cache analysis, and the pipeline aagd/g. in
building the set of possible processor states in inputiduipeach
basic block). Each hardware analysis provides an absteatars-
tics of the hardware that describe the behavior of those oomts

on the abstract values. This step must be repeated for eesry n
architecture taken into account.

3. Theglobal architecture of the WCET
estimation tool

The two main entries of the tool are the processor model aad th
program binary, as depicted in Figure 1. The processor &rdegl

as the union of its componentsP = |J C; and modeled as a

hierarchical timed abstract state machir?e, describetiduit the
paper, that has the useful feature of enabling multiple diefits for

a same componeqt;. A supervisor that we call th@racle decides
what abstraction level is best suited for the current cdntegrder

to optimize theprecision to state explosion ratio. A value analysis
stage is used to obtain information regarding the instonotirder,
their addresses and the control flow graph of the program.-Sym
bolic execution is used to symbolically execute each insion of
the program. This means that each variable has initiallynabsyic
value (as we generally do not posses exact information ealite)
that gets refined by accumulating all the informations aruisitens
taken during execution. One of the advantages of this matibat

it manages to simulate the interactions inside the procésste-
tail, for example capturing by construction the timing aradies
[12]. The SE generates all reachable states of the processor, mean
ing that we have to manage a rapidly increasing state spage. O
fusion stage consists in merging as much states as possihle w
out affecting too much the precision of the estimation. Weieae
this by using the prediction module that will first identifyet states
that are good candidates for merging and then estimate th&cim
of the fusion on the global analysis. After browsing and eatihg
the processor’s states, the time corresponding to the \pathtis
selected.

choose -Oracle train
abstraction oracle

level

Hierarchical
ASM Model

Conjoint
Symbolic
’m“—) Execution

instr order
instr address

'Symbolic inputs !

State

Fusion
Prediction Module

WCET

Figure 1. Global architecture of the WCET estimation tool

14

4, Timed Hierarchical Abstract State Machines
4.1 Abstract State M achine Formalism

The sequential ASM Thesis, introduced in [13] proves thenize
phic modeling of any algorithm. The sequential ASM algarith
consists of a set aofules applied tostates in a sequence of steps
assimilated to aun. States are structures in the sense of first-order
logic, with relations treated as Boolean-valued functiohdinite
collection of function names having a fixed arity is callegbaab-
ulary, T'. A stateS of vocabularny is a non-empty seX, together
with the interpretation of all function names Ihover X, there-
fore holding the values of all the variables at a specific.Sthp
dates represent the simplest change that can occur to a state by the
change of the interpretation of a function at one partictuate of
arguments. LefR be a rule that gives rise to a set of updates. In
order to executeR at S all the updates are triggered in the corre-
sponding update set. Thus we have tpdate rule, theblock rule,

a sequence of transitions rules that are executed simaoliahethe
conditional rulef g then R, else R, endif, etc.

4.2 Hierarchical Timed ASM

Possessing a precise and versatile model of the processeryis
important. Nevertheless having access to an usable HDL, ¢éede
rarely the case for platforms used in hard real-time systénas
_are fairly outdated, and even if it exists, their is no commamified
description language. Ideally we should use the descriifdche
processor as an input and generate an usable model for tlysiana
As the lack of availability and standardization makes trsk iian-
possible, the need to create a model for each platform is atand
This is one of the bottlenecks in the adaptability of curremats.
We consider that the modeling part should be therefore asteuh
straightforward engineering task that can be made on thevity;
out disposing of precise knowledge with regard to the reshef
tool. Therefore we chose to use the ASM, a model that bridges t
gap between human understanding and formulation of redbdwo
problems and the deployment of their algorithmic solutjogn®ur
case, the modeling of the processor. The ASM showed itsexfifigi
as a specification method in numerous practical applicat{ery.
see [14], [15]).

Using a human readable and machine executable language
makes the difference when it comes to speeding up the profess
the hardware description. However some important featwere
not included in the original version of the ASMs [13] like ttim-
ing aspects hence updates are considered immediate. Qatiaikbt
[16] introduced the concept of durative actions by addinye
directly in the syntax; our approach is similar. In [17] a totgpe
of a simulator for reactive timed ASMs that verifies the respe
of requirements specifications. Besides the timing aspeetsn-
rich the original model with hierarchical feature that elealus to
give different definitions on several abstraction levelsh&f same
processor component.

The goal of hierarchical ASMs is to provide at any time during
the analysis, the right level of abstraction in order to preévthe
combinatorial explosion. We know that we do not always digpo
of precise information during the analysis (e.g. data menaai-
dress, availability in the cache, etc.). Therefore usimgttost pre-
cise component description, the fetching mechanism fomeia,
would be useless, on the other hand, a less precise, moraabst
definition can help reduce the number of generated states.

The hierarchical definition of components integrates seashy
into the ASM formalism. Basically, theracle is an ASM module
that imports all the necessary function definitions and espine
needed functions or rules. Each hierarchical module is eéfas
a control state ASM, cf. [15], using in its condition the risu
from theoracle that automatically decides which implementation is

appropriate for the current context. Theacle has several general
strategies and it is further guided by information depehden
the current analyzed platform. A dynamic mode is also abkdla
that changes the default decision strategies based on staryhi
of its success. However, having to compare different execsiin
parallel in order to confirm the strategies is costly and willy
be used as a last resort. Equivalence classes for the ddfiz stna
under study in order to determine a pattern dependent oretireel
of precision that we dispose on the data.

—I forall comp in uP I—
|| Select(FETCH) rule

Select(DECODE) rule

_|forall fetch in FETCHEP!

selected(Fetch1
and
FetchOK

)

Fetchl rule

selected(Fetch1)
and
FetchOK

Fetch2 rule

Figure2. Theoracle and the fetcher modules

Figure 2 shows theracle and two fetcher models, pictorially
depicted in a fashion inspired by the control state ASMs afgBo
et all.,[15], equivalent to the ASM definition bellow.

FETCH =
forall fetch in FETCHER do
{FETCH1 (fetch), FETCH2(fetch)}

In Figure 3 we have two definitions of the Fetch stage, the first
one corresponding to the more abstract version that wiically be
chosen by theracle if we have no precise information on the exact
fetch address. Generally we have a family of abstractiorefmh

component of the processorg, = |J «; so thatC X Cy7. Let
j=0

T(C?") be the contribution of the abstract component to the global
execution time. We must haWC;7) I T(C;).

5. Conjoint Symbolic Execution

The use ofSE to analyze the intra-processor interactions has been
implemented with good results in [11], however the methdtessi
from the lack of a precise hardware model and inaccurateinmgerg
strategies that lead to important overestimations. Thie IS&scon-
sists in replacing the variables with symbolic values arteéming

the operations in order to take this into account. The imetgpion

of the assignment rule is straightforward. lpépc) be @, p(x;) be

E; andp(a < () be the oldp where the value o is changed

to 5. A special treatment is applied to conditional instrucsioimat

use thepc to explore all the possible scenarios. The expressions
conjoined in thepc are of form@ > 0 where(is a polynomial

15

FETCH

if FetchOK then
FetchQueue:=getNextInstr ()
t:+=[t_min, t max]

endif

if FetchOK then
FetchAddr:=getExactFetchAddr ()
howMany :=FetchAddr MOD 4
FetchQueue:=BurstAccess (
FetchAddr,howMany)
t:+=[t_BurstFetch]
endif

Figure 3. Different definitions of the fetcher

over symbolic values. LeR be this expression. We thus have three
possible cases. We can determine fromghéhat the condition is
always true(pc O R andpc 7 —R), analogue for always false
or we can not determine if the condition is true or false,> R
andpc D —R, therefore the execution will continue along both
branches, generating two new paths.

The first step of our conjoire deals with the program’s CFG
that is regarded as an input for the processor’s m&éel

6. Smart State Fusion

One of the major drawbacks of the SE comes from its quality
of generating every feasible path, that for a real-life stdal
program generates a combinatorial explosion that is nobobly
containable. What still remains challenging today is todtarhis
explosion while still remaining precise enough that trated to
finding a good way of eliminating some of the states. We chduse
technique of states fusion that will try to generate an albtstate
capable of capturing the respective states features, egfards to

the goal, but remain as compact as possible. It has beenrprove
in [18] that because of the finite number of states a processor
have and because of the constrains generated by the executio
contexts at a certain point we will have states that regasdté

the different history, will generate identical or very sianinew
states. One major step in having precise fusions is to determ
when to make them and what changes to apply. States can be of
two types: identical, meaning that they have either all teenents

that are the same, in this case we can suppose that an eventual
fusion will not impact the precision of the analysis, or dani
some of the components are not the same so we proceed toranothe
analysis to determine to which extent they are differener&fore
similar states can be strongly or weakly similar, meanirag the
impact of the fusion will be acceptable or not. For the insthis
estimation is done dynamically by our prediction moduleghal is

to evaluate the impact in the future of a fusion by unrollihg tree

for several steps (generally equal to the pipeline deptiiticuing

the execution along the paths before and after fusion anghaony

the result. Further details about this technique can bedfaufi8].

[Identical |
States

Evaluation

several

cycles
acceptable precision
loss => fusion

else => no fusion

Figure 4. The Dynamic Fusion - snapshot of the Prediction Mod-
ule

7. Global algorithm

1. Start from the initial state: where all the componentsehidne
unknown value angc is set totrue

[4] G. Schellhorn, Verification of ASM Refinements Using Geatieed
Forward SimulationJournal of Universal Computer Science (J.UCS),
7(11):952-979, 2001.

[5] K. Winter, Model Checking Abstract State Machii#hD Thesis, 2001.

[6] G. Castillo, Towards comprehensive tool support for thést State
Machines: The ASM Workbench tool environment and architegt
in D. Hutter, W. Stephan, P. Traverso, and M. Ulimann, edgplitd
Formal Methods FM-Trends 98, Springer LNCS 1641, 311-325, 1999.

[7] H. H. Daho and D. Benhamamouch, Formal Verification of ASM
Models Using TLA +, in Proceedings of the 1st internatioratference
on Abstract State Machines, B andZBZ’'08), (Eds.). Springer-Verlag,
2008.

[8] H. Casse and P. Sainrat, Otawa, A framework for expertmngtWCET
computationsERTS06, 2006.

[9] R. Wilhelm, Formal Analysis of Processor Timing Models,
Proceedings of the 11th SPIN Workshop Barcelona, Spaim.200

[10] R. Heckmann, C. Ferdinand, Worst-Case Execution Tineglietion
by Static Program Analysis, http://www.absint.com.

[11] T. Lundgvist, A WCET Analysis Method for Pipelined Magproces-
sors with Cache Memories, Goteborg, Sweeden, 2002.

[12] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, |. Ralid Eisinger,

2. For every variable that we encounter and that we do not have and B. Becker, A vDefinition and Classification of Timing Analies,

the exact value, assign a symbolic value

3. Activate the first ASM model and then add the guard condlitio
g to thepc

4. Choose from theracle the appropriate version of the ASM
modules

5. Compute the update set of the current step

6. Apply the update set (taking into account that some teritis w
have symbolic values)

7. Add the result of the update set to the global system state

8. Add the generated states to the collection of next statégt
executed

9. Add the duration of the transition to the global time
10. Repeat from point 2. until the collection of next statesrpty

8. Conclusions

The world of embedded software is no longer integrating #mp
hardware/software therefore critical systems are becgpmiore
and more difficult to prove and certify. The growth in compitex
and variety increases the need of versatile analyze methaiods
adapted tools, that can easily and as costless as possihleitie

a large panel of architectures. To this end we presented @l nov
approach that is able to respond to the evergrowing demanti®a
place itself into a real industrial context.

References

[1] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. ThegirD.
Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, keNer,
I. Puaut, P. Puschner, J. Staschulat, P. Stenstrom The Wasst
Execution Time Problem Overview of Methods and Survey ofl§oo
ACM Transactions on Embedded Computing Systems (TECS), Volume
7, Issue 3, April 2008.

[2] T. Lundgvist and P. Stenstrom, An Integrated Path andigmnalysis
Method based on Cycle-Level Symbolic Execution,Real-Time
Systems, Volume 17, 183-207, November 1999.

[3] J. Teich, P. W. Kutter, and R. Weper, Description and Sation
of Microprocessor Instruction Sets Using ASMs, in Procegsliof
the International Workshop on Abstract State Machines,ofhand
Applications ASM ’'00), (Eds.). Springer-Verlag, London, UK, 266-286,
2000.

16

WCETO06, 2006.

[13] Yuri Gurevich, Evolving Algebras 1993: Lipari Guidep&ification
and Validation Methods, ed. E. Brgéxford University Press, 9-36,
1995.

[14] University of Michigan, ASM homepage.
http://www.eecs.umich.edu/gasm/.

[15] E. Borger and R. Stark, Abstract State Machines: A Mdtfar
High-Level System Design and Analys&pringer-Verlag, 2003.

[16] M. Ouimet and K. Lundqvist, The Timed Abstract State Kiae
Language: Abstract State Machines for Real-Time Systenineéagng,
JUCS, 2007.

[17] A. Slissenko and P. Vasilyev, Simulation of Timed Abstr State
Machines with Predicate Logic Model-Checkiri) CS, 2008.

[18] Bilel Benhamamouch, Bruno Monsuez: Computing worsteca
execution time (wcet) by symbolically executing a timetaete
hardware model (extented versiomjternational Journal of Design,
Analysis and Tools for Circuitsand Systems, Volume 1, No. 1, November
2009.

WCET Estimation of Multi-Core Processors with the MSI Cache
Coherency Protocol

Pradeep Subedi and Wei Zhang
Electrical and Computer Engineering
Virginia Commonwealth University
Richmond, VA 23284
Wzhang4@vcu.edu

Abstract

To safely exploit multi-core processors for hard real-time systems,
it is a necessity to be able to estimate the worst case execution
time (WCET) of parallel programs running on a multi-core pro-
cessor. For parallel programs sharing data, the cache-coherency
protocol used in a multicore processor may turn an otherwise
cache hit into “invalidated” or a miss, making it hard to safely
estimate the WCET. In this paper, we focus on studying a multi-
core processor with the cache coherency protocol MSI (Modified,
Shared and Invalid). We present an approach to extend the ab-
stract interpretation technique to model and statically analyze
additional states caused by the MSI protocol. Our approach can
safely estimate the WCET of parallel programs running on a mul-
ticore processor with the MSI protocol.

Categories and Subject Descriptors

C.3 [Special-purpose and Application-based Systems]: Real-
time and Embedded Systems

General Terms
Design, Performance.

Keywords
WCET, Multi-core

1.

In hard real-time systems, it is crucial to compute the upper bound
of the execution time of a real-time task [1], also known as worst-
case execution time (WCET). One method to estimate the WCET
is to exhaust all the possible program paths, for a given input
through measurement, but this method may be infeasible for large
programs or complex architectures with a large set of initial states.
Another method is to obtain the WCET by static analysis of the
program. The static analysis of the sequential programs running
on a uniprocessor is done by finding the longest feasible path in
the program’s control flow, and takes into consideration the tim-
ing of the micro-architectural components of the system [3, 5].
For the parallel programs running on a multi-core processor with a
cache-coherency protocol, in addition to considering the resource
contention and inter-thread conflicts among the program threads,

Introduction

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

LCTES’12 June 12-13, 2012, Beijing, China.

Copyright © 2012 ACM 1-59593-XXX-X/0X/000X...$5.00.

17

it becomes crucial to calculate the worst-case delay caused by
maintaining the cache coherence between different cores.

Many research efforts on WCET analysis of multi-core proces-
sors [6, 7] have focused on bounding the inter-core cache interfer-
ences in the shared caches. However, to the best of our
knowledge, no prior work has studied the effect of cache-
coherency in WCET estimation, which may be unsafe for real-
time applications that have concurrent threads sharing data. By
comparison, this paper examines a timing analysis method to safe-
ly estimate the WCET of parallel programs running on a multi-
core processor with the MSI cache coherency protocol.

2. System and Application Model

In a multi-core processor, each core usually has a private L1 in-
struction cache and an L1 data cache. The L2 cache can be either
shared or private. In this work, we assume a dual-core processor
with a shared L2 cache as shown in Figure 1. We assume a real-
time thread and another real-time or non-real-time thread are run-
ning concurrently on these two cores, potentially sharing some
data through both read (i.e. load) and write (i.e. store) operations.
The MSI protocol [9] is used for ensuring cache coherency.

The MSI protocol has three states: Modified, Shared and Inva-
lid. If a cache block is in the modified state, the cache block is
valid in only one cache, and it implies exclusive ownership of the
cache. A shared cache block implies that the cache block is valid,
and maybe shared by multiple processors. The Invalid state of a
cache block means that the copy of the data in the current cache
block is outdated (because another thread from another core has
modified it) and it must be updated from the shared cache or the
memory. More details about the MSI can be found in [9].

Due to the existence of different cache states, the worst-case
delay of memory accesses and eventually the WCET can be af-
fected. For instance, even if the cache analysis indicates an access

Core 1 Core 2

L2 Cache

Figure 1. A dual-core processor with shared L2 cache

may be always a “hit”, if the state of this cache block is “Invalid”
due to a previous write by another concurrent thread, this other-
wise “hit” will basically be converted into a miss by reloading the
data from the lower-level memory for keeping data coherent.
Therefore, we need a new method that is aware of the cache co-
herency protocols to safely estimate the WCET for multicores.

3. Analysis Framework

In this section, we will present an overview of the analysis
framework for a multi-core processor with the MSI cache coher-
ency protocol. Figure 2 overviews our analysis framework, which
involves three major steps, including the address evaluation, the
cache analysis with the MSI protocol, and the WCET estimation.

3.1 Assumptions

First, we assume that the loop bounds are known through either
static analysis or user annotation. Second, we assume the program
has no infeasible paths. Third, we assume that the multicore pro-
cessor uses the Least Recently Used (LRU) cache replacement
policy and the MSI protocol for cache coherency. Forth, we as-
sume there is no timing anomaly or domino effect.

To focus on cache analysis, we do not model the shared bus in
this work. In our analysis, we use a shared address array X to
model all the memory blocks that are shared by different cores.
We associate a tag to each shared memory block, which indicates
whether a core has recently modified any data or not. More specif-
ically, if the tag of a memory block in X is I7 (or I2), it means it
is modified by core 2 (or core 1) and thus the corresponding data
in core 1 (or core 2) become invalid. And if the state is s, it indi-
cates the block is in the shared state.

3.2 Address Evaluation

Since we analyze both the data and the instruction caches, we
need to get the set of addresses accessed by the given task. In-
struction references are relatively straightforward to analyze [6].
For data references, we use the register expansion framework [2]
to identify the relative addresses of all memory blocks. For each
register that is used to specify the address of a load or store in-
struction, we perform register expansion recursively to trace the
source registers and computation is performed to evaluate the set
of memory blocks accessed by that instruction. If a load instruc-
tion and a store instruction are mapped to the same memory
block, they can potentially cause cache coherency misses unless
one can statically prove that the load occurs before the store.

Based on the assembly codes of two tasks (or threads) task 1
and task 2 running on the core 1 and core 2 respectively, two con-
trol flow graphs are created and analyzed. First we analyze all the
load and store instructions in tasks 1 and 2. Then the set of ad-
dresses accessed by task 1 and task 2 are stored in two arrays. If
any two sets of addresses are overlapped, then our algorithm iden-
tifies that they point to a shared address in the main memory,
which is then added into the shared address array X.

3.3 Cache Coherency Aware Analysis of Caches

For cache analysis, the abstract interpretation method is used.
Although we use the method presented in [5], we make some
changes to the method to include the effect of the cache coheren-
cy. A memory block m in the shared array X is represented as mj,
where j represents the status of the block and can be /2 (i.e., modi-
fied by the task running on core 1, thus invalid for the task run-
ning on core 2), I/ (i.e., modified by the task running on core 2,
thus invalid for the task running on core 1), or § (i.e., shared). The

18

L1 Cache
Analysis

Cache Access
Classification

Cache Access
Classification

Unified L2
Cache Analysis

Unified L2
Cache Analysis

L2 Cache Conflict Analysis

WCET
Estimation

Estimated WCET

Figure 2. Our analysis framework
function shared()?, m) takes a memory block m and the shared

array X as inputs and returns the state of the memory block in the
shared array. For instance, if a memory block my is in the shared
array and its state is S, then the above mentioned function returns
S, meaning the data is in the shared state in the cache.

Algorithm 1 shows how the states inside the shared array X are
changed. This algorithm is run after the evaluation of the shared
variables. The initial state of all the shared memory blocks is as-
sumed to be x (i.e. unknown).

Algorithm 1. Change of states inside shared array X, with the
read and write operations

if (analyzing in core 1) then
for (all instructions of the task running on core 1)
if (the instruction is read) then
st = state of a memory block possibly referenced by the instruction
if (stisx or 77) then
set states of all memory blocks possibly referenced by this
instruction to S;
end if
end if
if (instruction is write) then
set states of all memory blocks possibly referenced by this
instruction to 12;
end if
end for
end if
if (analyzing in core 2) then
for (all instructions of the task running on core 2)
if (the instruction is read) then
st = state of a memory block possibly referenced by the instruction
if (stis x or I2) then
set states of all memory blocks possibly referenced by this
instruction to S;
end if
end if
if (the instruction is write) then
set states of all memory blocks possibly referenced by this
instruction to I7;
end if
end for
end if

For a task running on core 2, the state in X is also changed as
mentioned in the algorithm. For every write the task sets the state
to /1 and for read operations accessing memory blocks having
state 12 (in X), the state is changed to S and the data is fetched
from the lower-level memory.

In the following, we consider an A-way set associative cache
with a number of cache sets F=< f,....,f;» > where n = capaci-
ty/line size, a cache set f; consisting of A cache lines f; = <
1y,...,1a>, and all the store operations to this set represented by a
set of memory blocks M= {my,...,mg}.

The function set: M = F determines the cache set where a
memory block will be stored (% denotes the modulo addition):
set(m) = f;; where i= adr(m) %(n/A) +1. The function adr: M
N gives the address of each memory block [4].

The cache update function is a state update function that models
the LRU replacement strategy. The following function takes a
cache set and a block and returns the updated cache as follows.

[l »m
li g S(li—l)l i=2..h

us(s,m;) = if Al :s(p) =m

[l »m
I » stiz)li=2..4}
otherwise

The notation [y = z] denotes a function that maps y to z.

The abstract set state §:L'—2M' maps set lines to a set of
memory blocks. An abstract cache state é:F —S maps sets to
abstract set states. S denotes the set of all abstract set states and €
denotes the set of all abstract cache states.

The abstract update function is modeled as

e(é,m) = ¢[set(m) +» g ((é(set(m)),m)]

The join functions that we use for must, may, and persistence
analysis are based on [4].The join function for must analysis is
similar to set intersection, except that if a memory blocks has two
different ages in two abstract cache states, the join function takes
the oldest age.

j§(§lr§2) =3

where,
§(lx) = {m|EIla, L,withm € §1(la), me §2(lb) and x = max(a, b)}
N {m|m € §;(I,)and Al,with m € §,(1,)}
N {m|me $;,(,)and Al,withm € $,(l,)}

The join function for may analysis and persistence analysis
are similar to the above except that in may analysis, set union is
performed and the minimum age is taken, and in persistence anal-
ysis set union is used and the maximum age is taken. The abstract
interpretation method [5] is used at both L1 and L2.

For the level 1 instruction and data caches, must, may and per-
sistence analyses are firstly conducted. In case of an instruction
cache, the analysis is done as specified in [5]. The L2 cache anal-
ysis is similar to the L1 cache analysis except that it does not take
into consideration the blocks that are classified as AH (i.e. Always
Hits [5]) in L1 caches.

The references are provided with Always (A), Never (N), and
Uncertain (U) tags for the L2 cache analysis.

19

L1 Classification L2 tag
AH N
AM A
NC U

Table 1. L2 tag for different L1 classification of memory blocks

If a reference tag is N, the abstract cache state is not updated
because they do not access the L2 cache at all. For the reference
with tag U, two abstract cache states are created; one updates the
reference while another does not update the reference and both of
them are then joined later.

Since the L2 cache is a unified cache, for each instruction, ini-
tially the abstract cache state is updated by using the update func-
tion of the instruction cache analysis first. If the instruction is a
load/store instruction, and it references a set of memory blocks M,
then the result of the update function for instruction cache is up-
dated by the update function of the data cache analysis.

Now we have to take into consideration the cache conflicts in
L2 because it is shared and a task T2 executing on core 2 can
potentially conflict with task T1 executing on core 1. This brings
changes in the hit/miss classification of the memory blocks in T1.
Since the references with N tag never access L2 cache, we need
not consider these references for the conflict analysis. Now if the
memory block in T1 is classified as AM or NC, then the cache
state remains the same because the interfering task cannot down-
grade it further. So only the memory blocks with AH are affected.
Since the memory blocks can be evicted from the cache, we clas-
sify these interfering memory blocks as Non-classified (NC). For
set-associative caches, the method introduced in [7] can be used
for conflict analysis, where the age of the memory block is taken
into consideration and if the number of conflicting memory blocks
from the conflicting tasks is less than or equal to the N-age of
memory block in T1, where N is the associativity of the cache.
The cache state of the memory block is not modified because it
will not be evicted from the cache, resulting in the AH for the L2
cache. The age of a memory block is equal to the line number of
the cache block that the memory block is mapped into.

3.4 WCET estimation

Table 2 shows the worst-case access latency for a reference that is
taken into consideration during the WCET estimation for a basic
block, where hit;; is the latency of a hit at the level 1 cache; hit;,
is the latency due to a miss in the L1 cache but a hit in the level 2
cache; and miss;, is the latency due to misses in both the level 1
and the level 2 caches (i.e., the data must be fetched from the
main memory). After finding out the worst case latencies for all
the memory references, our algorithm then sums up these worst
case latencies to derive the WCET of caches without considering
the cache coherency misses.

L1 cache | L2 cache | Worst-case Access
Latency

AH - hity,

AM AH hit,

AM AM miss; o

AM NC missyo

NC AH hit,

NC AM miss; o

NC NC miss;»

Table 2. Access Latency of a reference in the worst case given its

classification

To safely estimate WCET for real-time tasks that share data
across different cores, we must incorporate the delay caused by
cache coherency misses. Algorithm 2 described below presents
our method of finding the worst-case delay caused by all the in-
validations inside a basic block, which provides an important
basis to derive the WCET for a multicore processor with the MSI
protocol.

Algorithm 2. Latency caused by invalidation of memory block m
inside a basic block b; shared (X, m) returns the state of memory
block in shared array; // means invalid for core 1; and /2 means
invalid for core 2.

COStinvatidation =0;
invalidation=0;
inst= first instruction of the basic block;
repeat
if (inst is a read instruction) then
n = number of memory blocks possibly accessed by inst;
if (n==1) then
if(shared (X, m)==I1) then
if (analyzing core 1 and reference classification is
not (AM for L2 or NC for both L1 and L2)) then
invalidation=invalidation+1;
end if
else
if (shared (X, m)==12) then
if (analyzing core 2 and reference classi-
fication is not (AM for L2 or NC for
both L1 and L.2)) then
invalidation=invalidation+1;
end if
end if
end if
else
if (n>1) then
my = any one memory block possibly referenced;
for(all possible my)
if(shared (X, m,,)==1I1) then
if (analyzing core 1 and reference classification is
not (AM for L2 or NC for both L1 and L2)) then
invalidation= invalidation+1;

end if
else
if (shared (X, m;)==I2) then
if (analyzing core 2 and reference classifica-
tion is not (AM for L2 or NC for both L1 and
L2)) then
invalidation= invalidation+1;
end if
end if
end if
end if
end if

end if
until (all instructions in basic block b finish)
COStinvatidation = invalidation*missy» latency;
return Costinyalidation

Suppose lat, is the worst case latency for a basic block b without
considering invalidation and b;is the number of execution times of
basic block i, then total cost for that basic block can be computed
as the follows, where costiaidgnion Can be calculated by using the
Algorithm 2.

20

Z (latb+COSlinvalidatian) X bi

Now the longest path search [8] or the implicit path enumeration
technique (IPET) [10] can then be applied to obtain the WCET of
the whole thread.

4. Concluding Remarks and Future Work

In this paper, we have presented the challenge of timing analysis
for multicore processors with cache coherency protocols. To ad-
dress this problem, we extend the abstract interpretation technique
to model additional cache states, which can safely derive the
worst-case cache performance by considering coherent cache
misses. Our ongoing work includes implementation and validation
of the proposed static analysis, and the exploration of additional
techniques to improve the tightness of analysis, for example, us-
ing timing overlapping information among concurrent threads to
reduce overestimation.

References

[1] R. Wilhelm et al., The worst-case execution-time problem-
overview of methods and survey of tools. Trans. Emb. Comp.
Syst., vol. 7, no. 3, 2008.

G. Balakrishnan and T.W. Reps., Analyzing memory accesses
in x86 executables. CC, 2004.

S. Chattopadhyay, A. Roychoudhury., Unified Cache Model-
ing for WCET Analysis and Layout Optimizations. Proceed-
ings of the 2009 30th IEEE Real-Time Systems Symposium,
p-47-56, December 01-04, 2009.

M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm., Cache
behaviour prediction by abstract interpretation. SAS.
Springer-Verlag, 1996.

H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise
WCET prediction by separated cache and path analyses. Re-
al-Time- Systems, 18(2/3), 2000.

S. Chattopadhyay, A. Roychoudhury and T. Mitra., Modeling
Shared Cache and Bus in Multi-cores for Timing Analysis.
13th International Workshop on Software and Compilers for
Embedded Systems (SCOPES), 2010.

Y. Li, Vivy S., Yun Liang, T. Mitra and A.Roychoudhury.,
Timing Analysis of Concurrent Programs Running on Shared
Cache Multi-cores. 1EEE Real-time System Symposium
(RTSS), 2009.

V. Suhendra, T. Mitra, A. Roychaudhary, and T. Chen. Effi-
cient detection and exploitation of infeasible paths for soft-
ware timing analysis. Proceedings of the Design Automation
Conference, 2006.

Yan Solihin, Fundamentals of Parallel Computer Architec-
ture, Solihin Publishing and Consulting LLC, 2009.

[10] Y. S. Li and S. Malik. Performance analysis of embedded
software using implicit path enumeration. In Proc. of the
ACM SIGPLAN Workshop on Languages, Compilers, and
Tools for Real-Time Systems, 1995.

(2]
(3]

(4]

(3]

(6]

(7]

(8]

(91

Acknowledgement
This work is partially supported by NSF grant CCF 0914543.

Introducing Service-oriented Concepts into
Reconfigurable MPSoC on FPGA for Coarse-grained
Parallelization

Chao Wang™#* XiLi*

Peng Chen® Junneng Zhang® and Xuehai Zhou'

'University of Science and Technology of China, Hefei, Anhui China, 230027
“Suzhou Institute of Advance Study, USTC, Suzhou, Jiangsu, China, 215123

{saintwc,zjneng, qwel23}@mail.ustc.edu.cn

ABSTRACT

High level programming into hardware is posing significant
challenge for reconfigurable modular embedded systems. In this
paper we propose SOREP: a Service-oriented Reconfigurable
Prototype, which introduces service-oriented architecture
(SOA) concepts to reconfigurable multiprocessor system on
chip (MPSoC) on field programming gate arrays (FPGA)
for coarse-grained parallelization. SOA concepts can
provide a uniform programming model as well as
computing resources integration manners to MPSoC
hardware. With the benefits of SOA and state-of-the-art
reconfigurable technologies, novel MPSoC design
paradigms are encountering new opportunities for
traditional technical challenges, including reconfigurable
task execution, programming models and out-of-order
scheduling. For demonstration, a service-oriented
reconfigurable MPSoC prototype has been built on FPGA,
regarding embedded processors and IP cores as computing
servants. The preliminary results demonstrate the prototype
can achieve more than 95% of the theoretical peak speedup
on average.

Categories and Subject Descriptors

D.4.1 [Process Management]: Multiprocessing/
multiprogramming / multitasking

General Terms Algorithms, Design

Keywords
Service-oriented architecture, multiprocessor system-on-
chip, reconfigurable computing,

1. Introduction and Motivation

FPGA based reconfigurable MPSoC has been considered as
one of the promising future microprocessor design
paradigms [1]. However, current MPSoC developers are still
suffering from limited programming ability and high
complexity during the design of different architectures for
various applications [2]. Whenever hardware is reconfigured,
developers need to redesign the middleware, programming
models or even the tool chains. Moreover, runtime task
partition and scheduling schemes need also to be carefully
reconsidered, which in case could dramatically drag down
the degree of task parallelization. In order to address the

21

{lixx,xhzhou}@ustc.edu.cn

above challenges, our research tentatively introduces
service-oriented concepts into reconfigurable MPSoC.

SOA concepts have been successfully applied in
software engineering and web services, and it’s shifting
towards lower level, such as operating systems [3]. However,
to our best knowledge, so far, few existing literature have
been conducted to introduce SOA to reconfigurable
hardware architecture designs. Instead, most state-of-the-art
FPGA based research platforms are constructed in specific
hardware, which means users need to acquire the specific
hardware configurations and scheduling schemes of the
system to handle the tasks distribution manually. Otherwise,
the parallelization degree could be dramatically dragged
down due to unsophisticated programmer’s experiences.
Therefore, the automatic parallelization degrees are still
worth pursuing.

From the weakness exploration of current studies, the
motivation of this paper is to integrate SOA with MPSoC
to absorb the advantages of both concepts. From the
exploration of SOA concepts’ benefits, we can conclude that
there are at least two significant advantages through
integrating SOA to MPSoC platform. Firstly, servant
integration interfaces are well defined, which facilitate
researchers to add/remove modularized function units
expeditiously during prototype system construction.
Secondly, with unified API, users are no longer concerned
about the target hardware, which means the partition and
mapping is handled by SOREP automatically. This feature
will significantly ease the burden of programmers, shorten
MPSoC design cycle, and reduce the complexity to construct
a heterogeneous single chip cloud.

In this paper, we tentatively propose a prototype to
demonstrate SOA concepts into heterogeneous
reconfigurable multi-core platform design. Based on the
previous research of [4], this paper builds a hardware
prototype on FPGA with state-of-the-art dynamic partial

reconfigurable technologies. We claim following
contributions:
1) This paper brings SOA concepts into real

reconfigurable MPSoC hardware, and builds a service-
oriented reconfigurable prototype SOREP. SOREP is
implemented on state-of-the-art Xilinx FPGA with multiple
Microblaze processors and adaptable IP cores. The
reconfigurable characteristics demonstrate the high
flexibility and scalability of SOREP.

2) SOREP provides an efficient experimental research
platform to attack traditional key challenges including IP
reconfiguration, task partition, and out-of-order task
scheduling. First, a self reconfigurable task execution model
based on state-of-the-art Xilinx Early Access Partial
Reconfiguration (EAPR) is carried out to minimize the
reconfiguration overheads. Second, when the
reconfiguration is ready, tasks are adaptively remapped to
computing servants without rewriting or recompilation.
Third, we also apply renaming techniques from instruction
level to chip level which can automatically detect inter-task
data hazards, and then distribute tasks to computing servants
for out-of-order execution.

The novelty of SOREP against current state-of-the-
art MPSoC architectures are listed as follows:

1) SOA concepts bring unified programming models and
servant integration interfaces, which can largely facilitate
researchers to construct flexible experimental platforms.
Therefore developers can concentrate on the key issues of
scheduling, on chip interconnection methodologies, and
reconfigurable technologies, etc. SOREP can ease the
burden of MPSoC architects and shorten the time to market
(TTM) of chips.

2) SOREP maintains middleware to fully support
automatic parallelization, including adaptive task partition
and out-of-order scheduling. In our approach, the
middleware is designed under the IP dynamic reconfigurable
condition. We integrate those methods into a SOREP
framework, which can be easily customized to build an
application-specific MPSoC.

2. SOREP Architecture and Concepts

Before SORA architecture is introduced, we define the
following terms at first.

Service: A service is defined as a specific kind of
functions with programming interfaces. All services are
packaged into libraries and can be invoked by function calls.

Servants: Servants refer to functional modules dedicated
to provide services to run specific tasks in hardware. All
servants are IP cores packaged in same manners.

“; : Uniform Interfaces D
7 ‘ Services Df.-f'milioz :j
Transfer Interfaces

g .
“1‘:.:_

Uniform Service

Terminal Usei

L._H__ . __,/"
Data Base
»
J J\ Software Lib
S 4

Software Lib

Terminal User

[a] Typical Service-Oriented Architecture

Applications

Figure 1 [a] illustrates the similarity of traditional SOA
concepts. All services are provided via front-end uniform
interfaces with service definitions. In the back stage, each
service is composed of specific functionalities transferred
from software libraries and data bases through the uniform
service interfaces. Similarly, the situation on MPSoC is
presented in Figure 1 [b], where the service definition
interfaces are turned into the application programming
interfaces (APIs), and each service providers are turned into
either a microprocessor, or a DSP/hardware IP core.

SOREP architecture consists of servants classified in two
categories: one Scheduling Servants is employed for task
partitioning, mapping and run-time scheduling. As the
kernel component, scheduling servant also plays a key role
in exploration for inter-task data dependencies. It can be
regarded as non-scalable as we move from one to ten to
hundreds of cores. However, it is possible to instantiate
additional scheduling servants if the architecture scale is
increased to more than 8 cores. Computing Servants are
designed to provide computing services and can be further
classified into hardware and software servants. Software
servants run on microprocessors with libraries, while
hardware servants are implemented in IP cores to run only
one specific kind of tasks.

The scheduling servant is connected to computing
servants and peripheral modules through via FSL channels.
All the hardware servants are loaded from IP libraries
dynamically. The middleware is composed of three levels:
application, middleware layer and communication layer.

2.1 Application layer

Application layer consists of service API, run-time libraries,
and application profiling. In order to maintain the consistent
user programming behaviors, system should provide unified
high-level abstract interfaces. The entire API is utilized for
spawning computational tasks and receiving results from
scheduling servant to computing servants. Moreover, in
order to fully benefit from the advantages of the self-
reconfiguration techniques, APIs are be kept unchanged
after hardware reconfiguration. In order to prevent the
considerable overheads of maintaining memory consistency,

Programming Wall

Application Proframming Interfaces

FPGA Chip

Scheduling with Uniform Tasks Transfer Interfaces

—

Microprocessor

DSP & ASIPs

Scheduler

IP Cores

[b] Mapping Services to MPSoC

Figure 1. Typical Service-Oriented Architecture and Services model on MPSoC

22

we utilize message passing mechanisms like MPI). Two
types of primitives are provided: blocking interfaces will
stall the execution and wait until results return, while non-
blocking interfaces will continue, results will return through
interrupts.

2.2 Middleware layer

In this Section, we give an overview of the services
middleware layer, which includes task partitioning,
scheduling and reconfigurable task execution models.

(1) Automatic task partitioning

The automatic task partition methods supervise the
procedure of how a single task is divided and then mapped
to IP core. As each IP core can run only one kind of task, a
task-to-servant table is employed to identify the target
servant for each task. The table maintains a mapping of tasks
to servants to virtualize the selection of the destination core.
Each table entry contains the task ID currently running on
that core as well as a count of the number of issued tasks
destined for that core.

(2) Out-of-order task scheduling

Scheduling servant is in charge of when the task can be
issued. For tasks which are independent from each other,
they can be issued simultaneously. However, in many cases,
inter-task data hazards (such as RAW hazards) make the
tasks run in sequence.

In order to fully exploit the potential task level
parallelism, we demonstrate traditional Scoreboarding and
Tomasulo algorithms from instruction level to chip level for
out-of-order task execution. Both techniques are common
knowledge in textbooks used to detect data hazards
automatically, while Tomasulo also can further eliminate
WAW hazards by renaming technologies. Since the two
technologies are quite familiar to architectural researchers,

we will directly show some experimental results in Section 4.

FSL Bus

PLB(Proceasor
Locs Bud)

-

(3) Reconfigurable task execution model

At start-up, certain IP cores are loaded as servants in
prior to task execution to provide an initialized run-time
environment. When the target servant is ready, it can receive
service requests from scheduling servant, run the task, and
then return the result by raising an interrupt. However, if the
target is not loaded during execution, current hardware
should be reconfigured dynamically. Furthermore, if there
are no more free areas in the chip, some of the present IP
cores should be switched out. FIFO or LRU policies can be
utilized under different conditions. For demonstration, self
reconfiguration technologies based on Xilinx EAPR are
introduced to support servant replacement.

3. SOREP Prototype on FPGA

We implemented a prototype for SOREP on a state-of-art
Xilinx Virtex-5 XC5VLX110T FPGA. One Microblaze
processor is used for scheduling servant, and another
Microblaze processor is employed as software computing
servant. Also, four hardware computing servants were
integrated, including Data Accumulation (adder), and three
EEMBC DENBench test cases of IDCT, AES ENC and
AES _DEC. For each service, one software computing
servant is designed in C library running on Microblaze, and
one hardware computing servant is described in HDL and
packaged as IP core.

Figure 2 presents the self reconfigurable prototype in
single FPGA. We integrate four hardware servants which
can be substituted to other servants in the IP library. The
reconfiguration procedure is manipulated by an internal
controller without user interaction. Based on the hardware
prototype, Figure 2 also gives a sample test case with the
running time for each type of single task. The running time
for each type of task is given in Figure 2. When the specific
API is invoked during execution, an automatic adaptive

Sample Testcase

do_T_JPEG(5, 0)
do_T_idct(6,5)
do_T_JPEG(10,9)
do_T_aes_enc(7,2,3)
do_T_aes_enc(8,2,7)
do_T aes_dec(2,2,4)
do_T_JPEG(5, 0)
do_T_aes_dec(8,2,4)
do_T_aes_dec(8,2,5)
do_T_JPEG(3,2)

-]
: gfg | do_T_idct(6,5)
il JPEG | 100
1 Running ' IDCT 50
Time | T
(KC)’C]@S) AES_ENC 25
AES_DEC | 12.5

Figure 2. SOREP prototype built in single FPGA and sample applications

mapping scheme will decide the target computing servant
for each task. In this paper, due to the page limitations, we
only give a demonstrative experiment to compare to
mechanisms in parts of the total design.

All applications are running on the scheduling servant at
first and then scheduled to certain computing servant. For
demonstration, we use a greedy strategy: when there is
available hardware computing servants, the task will be sent
to hardware. Unfortunately, if all the hardware servants are
occupied, the task will be dispatched to software computing
servants. If all the software is also occupied, then SOREP
can only wait for other applications to complete and first
tries to schedule the application in hardware. This method is
considered to show the effectiveness of partition scheme,
and can be replaced by other algorithms to get a better result.

Within the hardware and programming interfaces, we
measured the performance and accuracy of the FPGA
platform, with the Scoreboarding and Tomasulo scheduling
algorithms respectively.

Running Time

500
-y 44 Scoreboarding
& 400 |
e 7
-

(5] s T a . ;
x 300 | i & , Tomasulo
o !
E R Py,
= 20 e i
= :

deeep R & a”
= - - . "
£
5 100
[+

Length of the Sequences

«— Tomasulo Theorstical
—+—Scosbaarding Theoretical

- Tomasulo Exparimental
* Scoreboarding Experimental

Figure 3. Comparison between Scoreboarding and Tomasulo

The empirical result of the test case in Figure 2 is
presented in Figure 3. The length of sequences N indicates
the first N tasks listed in Figure 2. The empirical results are
quite close to the theoretical speedup, with most of the
results more than 95% accuracy. In our scope, this result
shows that Scoreboarding and Tomasulo algorithms can run
tasks out-of-order with lower overheads than Task
superscalar [5]. Compared to Scoreboarding, Tomasulo has
higher scheduling overheads, which leads to a bigger gap
between experimental and theoretical value. However, since
Tomasulo can not only detect WAW and WAR hazards but
also eliminate them by register renaming, the overall
speedup is significantly larger than Scoreboarding.

We have also demonstrated the self-reconfigurable
MPSoC prototype with Xilinx EAPR methods, and more
than one IP cores can be reconfigured at run-time, with the
FPGA chip-programming time at 409 ms approximately
(For AES and DES IP modules).

In the prototype, we have integrated two Microblaze
processors and four servants, as well as peripheral blocks.
The system has been synthesized and Table | outlines the
hardware cost for the entire system in single FPGA. SORA
system takes 26% area in LUTs and 7% in registers overall,
which means we can integrate more than 20 servants at the
same time. Considering the abundant hardware resources

24

supplied in FPGA, the resources are acceptable to construct
a heterogeneous CMP.

TABLE |. SYSTEM HARDWARE COSTS OF THE ARCHITECTURE

Resource Status Percent
Number of Slice Registers | 6493 out of 17280 | 7.00%
Number of Slice LUTS 18209 out of 69120 26%
Number used as logic 17577 out of 69120 25%
Number used as Memory 601 out of 17920 3%
Number of External 10Bs 4 out of 640 1%

Number of BUFGs 3 out of 32 9%

4. Conclusion and Future work

In this paper, we introduced SOA concepts to MPSoC
platform for chip level parallelization. SOA concepts bring
new opportunities to traditional MPSoC challenges
including unified programming interfaces, automatic task
partitioning, and out-of-order scheduling scalable hardware
reconfigurations. Empirical results on FPGA shows that
SOA can efficiently facilitate researchers to construct
application specific MPSoC with adoptable modules with
high flexibility. Both the software scheduling overheads and
hardware utilization are acceptable.

This work is still working-in-progress and there are
numerous future directions worth pursuing. First, task
partition and adaptive mapping methodologies will be
essential to efficiently support automatic parallelization.
Second, although significant researches are underway for
programming, little work has been done on integrating
reconfigurable FPGAs with conventional programming
paradigms. Finally, the chip-level parallelization also
proposes new challenges on out-of-order task scheduling, to
break the area and resources limitations of FPGA devices.

References

[1]. Shekhar, B. and Andrew A.C. 2011. The future of
microprocessors. Communications of ACM, 54, 5(May. 2011),
ACM, New York, NY, 67-77. DOI=
http://doi.acm.org/10.1145/1941487.1941507

[2]. Satnam, S. 2011. Computing without processors.
Communications of ACM, 54, 8 (Aug. 2011), ACM, New
York, NY, 46-54. DOI=http://doi.acm.org/10.1145/
1978542.1978558

[3]. David W., Anant A., Factored operating systems (fos): the
case for a scalable operating system for multicores. 2009,
ACM SIGOPS Operating Systems Review, 43, 2 (Apr.2009),
ACM, New York, NY, 76-85.
DOI=http://dx.doi.org/10.1145/1531793.1531805

[4]. Wang, C., Zhang J., et al. (2011). SOMP: Service-Oriented
Multi Processors. Proceedings of the 2011 IEEE
International Conference on Services Computing, IEEE
Computer Society: 709-716.
DOl=http://dx.doi.org/10.1109/SCC.2011.26

[5]. Etsion Y., Cabarcas F., Rico A., Ramirez A, et al., Task
Superscalar: An Out-of-Order Task Pipeline, in Proceedings
of the 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture. 2010, IEEE Computer
Society. p. 89-100.
DOl=http://dx.doi.org/10.1109/MICR0.2010.13

