
Deterministic Execution Model on COTS

Hardware

Frédéric Boniol1, Hugues Cassé1, Eric Noulard1, and Claire Pagetti1,2

1 ONERA, Toulouse, France
2 IRIT, University of Toulouse, France

Abstract. In order to be able to use multicore COTS hardware in criti-
cal systems, we put forward a time-oriented execution model and provide
a general framework for programming and analysing a multicore compli-
ant with the execution model.

1 Introduction

The use of multicore brings several benefits in embedded systems such as the
weight reduction, the increased performance or a reduced maintenance. Embed-
ding a Commercial-Off-the Shelf (COTS) hardware in a safety critical system
must inevitably be accompanied by a formal proof of correctness. In this paper,
we propose a way to execute safely a specification on a multicore COTS. Our
system model consists of a set of concurrent periodic tasks communicating via
shared variables and subjected to dependencies. Our system architecture is a
symmetric multicore processor where each core has private first-level (L1) and
second-level (L2) caches with a shared memory bus and controller for accessing
the DRAM.

1.1 Challenge for Embedding a Multicore COTS

An execution of the system is correct if all the constraints and in particular the
temporal ones are met. It is therefore necessary to compute the worst case execu-
tion time (wcet) for any task. This computation takes into account the possible
interactions and resource contentions due to the competition generated by the
other tasks. Unfortunately, today, there is no solution to compute tight WCETs
for multi-threaded code on multicore COTS. Indeed, existing works [23] and
tools, such as Absint [13] and Otawa [1] have severe restrictions. They operate
well as long as the code is sequential and the processor is single core. Further-
more, no other device with an unpredictable behaviour should interfere with the
processor execution timings. There are additional difficulties for multicore:

1. the shared internal bus access. The concurrent accesses to the same resource
(for instance the RAM) are serialised in a non predictable way.

2. the cache coherency. The update of a variable concurrently stored in several
caches is automatically done by the COTS in a hidden and non predictable
way (it requires an access to the bus with no user explicit instruction).

A. Herkersdorf, K. Römer, and U. Brinkschulte (Eds.): ARCS 2012, LNCS 7179, pp. 98–110, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Deterministic Execution Model on COTS Hardware 99

3. available documentation including descriptions of shared buses, memory and
other devices controllers, does not give enough details on the COTS.

Any critical systems designer has to cope with these problems and has mainly two
approaches to safely embed a multicore. The first involves designing a time-able
processor architecture [22,14] or an internal bus with a time division multiple
access (TDMA) [4,20]. It is, thus, possible to strongly improve worst-case anal-
yses. The cost of such specific hardware developments may often prevent their
use and may force the designer to rely on a COTS. The second approach is then
to apply an execution model : the idea is to define some rules that constrain and
reduce the number of non predictable behaviours. If the rules are well chosen,
the system may be analysed without too much pessimism. The basis is to apply
time oriented mechanisms by constraining the behaviours within timing slots.

1.2 Contribution

We defined a generic deterministic execution model allowing the computation of
worst case times. This industrial approach had led to a patent which is public
since June 2010. The purpose of this article, is to present a process for program-
ming and analysing a multicore, the usage of which is compliant to the execution
model.

The generic execution model distinguishes, on each core, times of functional
computation and times for accesses to the memory. These two types of compu-
tation occur in different slices which are statically defined. The sliced execution
model operates as follows:

1. two kinds of slices alternate indefinitely on each core:
– execution slices: a core in an execution slice executes a functional code

without any shared resource access. This means that all the instructions
and data are locally stored in the caches;

– communication slices: during such a slice, the core does not make any
functional computation. It first flushes from local cache(s) to the RAM
the values computed during the previous execution slice, and then fetches
into local cache(s) all the codes and data required for the next execution
slice.

2. a static synchronous scheduling of the slices on each core is defined off line. It
describes a repetitive pattern where communication slices are synchronous.

The right side of Figure 1 shows an example of a slice scheduling for a dual
core. White blocks represent execution slices. Grey (resp. black) blocks represent
flushes (resp. fetches). Assume that each core has a local clock physically derived
from a common hardware clock, implementing time slots do not need any specific
hardware or software synchronisation mechanism.

From now on, a COTS hardware equipped with a sliced execution model will
be called a sliced architecture. The main contribution of this paper is to propose
an automatic programming framework and a series of analysis techniques for
a tight evaluation of a sliced architecture. Figure 1 illustrates the development
process for such an architecture:



100 F. Boniol et al.

Application designer
Multiperiodic

task set
+ data-flow

Integrator
Static synchronous
slice scheduling

WCET estimation
of task

sliced
code

WCTT computation
flush and fetch

communication slice

ready
for execution

Step 2
Slicer

Step 3
Uppaal

Step 1
OTAWA

≤ Δ

Step 4
> Δ

backtrack

Core 1

Core 2

time 0 2 4 6 8 10

Fig. 1. Development process

– the inputs are the functional specification and the synchronous slice schedul-
ing chosen by the integrator.

– (step 1) involves evaluating the wcet of each execution slice separately. This
is reduced to a static wcet evaluation of a non preemptive sequential code
without any non predictable behaviour (thanks to the locality of the data and
code within the caches) on a uniprocessor, which is a well-known problem.

– (step 2) is the generation of a static allocation of the tasks and the data-
flows on the sliced architecture. The algorithm chooses the addresses of the
instructions and data, as well as the allocation in the execution slices, such
that all the functional (e.g., precedences, periods, deadlines) and capacity
constraints (e.g., slice and cache bounds, memory capacities) are met.

– (step 3) involves proving that the worst case traversal time (wctt) of each
communication slice is less than the temporal length of the slice. The idea is
to explore all possible concurrent write (resp. read) combinations from the
cores and peripherals involved in a communication slice by making a precise
model of the shared bus, the memory controller and the RAM.

We show the feasibility and how we can implement a sliced multicore by devel-
oping the tools for a MPC8641D [10] target. It is a dual core processor made
up with two Power PC e600 cores[9], a MPX Coherency Module (MCM) which
serialises the requests for the memory controllers and a dynamic RAM. We have
developed an Otawa model for computing execution slice wcet, we have de-
veloped a slicer based on constraint programming and Uppaal [2] models for
computing wctt. We have applied them successfully on a avionics application [3].

1.3 Related Work

The use of an execution model is not new. The Bulk Synchronous Parallel (BSP)
model [21] had been designed to restrict the behaviour of parallel programs. More
recently, the predictable execution model named PREM [17] had been proposed
for uniprocessor COTS in order to cope with CPU and I/O interferences. More



Deterministic Execution Model on COTS Hardware 101

recently, predictable concepts for many-core architecture [16] have been defined
and implemented in a cycle accurate simulator.

Our solution goes further in the time-oriented separation of concerns than
existing execution models (such as BSP or PREM). The cores are synchronised
and repeat an off-line scheduling. Fixed intervals are enforced both for execution
and communication.

The main novelty is that we propose a development process and an automatic
tool set for the designer to program a sliced architecture. For instance, in [17],
the designer must annotate its code in order to indicate to the PREM-aware
compiler which piece of code executes in a predictable interval. In our approach,
the allocation is left to the slicer. If the wcet computation is reduced to a standard
calculation, the tight computation of wctt is rather new. This is made possible
because we know which data are read (resp. written) within the communication
slices but also because we provide a detailed architectural description of the
memory accesses. Most papers are dedicated to the definition of predictable
memory controllers but very few propose an abstract model of the multicore
COTS communication system. [11] proposed a Petri net based formal modelling
of uniprocessor memory access. [7] modeled exchanges between a radar and a
memory with a Uppaal model.

2 Wcet of an Execution Slice

The WCET computation has been applied on an e600 processor core [9] but it
is suitable for any kind of processor core which does not share caches with other
parts of the multicore.

2.1 Reminder on Uniprocessor wcet Estimation

Most of the approaches and tools work on three major steps [23].

1. Control flow graph construction The first step involves generating the
control flow graph (CFG) from the binary of the program. The nodes are the
instructions (usually grouped in basic blocks) and the edges the transitions be-
tween instructions. Building a CFG is generally automatic and requires to deter-
mine the maximum number of iterations in a loop and the number of iterations
overall the run of the program.

2. Micro-architectural analysis This analysis computes the timings of the
program blocks based on the execution graph technique [19]: the idea is to de-
scribe precisely the temporal behaviour of an instruction in each stage of the
pipeline and dependencies of instructions and pipeline resources. Such a precise
hardware model is built from available documentation and measures.

3. Overall wcet is obtained by combining the cost of the basic blocks. The
Implicit Path Enumeration Technique (IPET) encodes the timing behaviours
and variations of the program as an integer linear programming problem (ILP).

In our experimentation, we have used Otawa [1], a framework developed at
IRIT since 2004, to compute WCETs of C code programs.



102 F. Boniol et al.

2.2 Application to a Sliced Architecture

Using Otawa on the sliced architecture requires only the definition of the micro-
architectural analysis. Since there is no access to any external component, com-
puting the WCET for an execution slice is as simple as for a uniprocessor. A
precise model of the PowerPC e600 [9], which belongs to the family of 32-bit
Power Architecture microprocessor cores developed by Freescale, had been de-
fined. Due to the high complexity of the core and even if the behaviour is highly
constrained and confined, calculating the WCET for an e600 was a real challenge.

Architecture Modelling. The memory and the pipeline have to be modeled.
In order to simplify analyses : (1) all data are pre-loaded in the L1 data cache
causing a constant access time (1 cycle), (2) all instructions are pre-loaded in
the L2 instruction cache causing also a constant access time (12 cycles), (3) the
dynamic branch predictor is deactivated (only static branch prediction, encoded
in the instruction code, is supported to achieve a maximum of determinism).
From the timing point of view, the memory hierarchy is only made of (1) an L2
cache which can be viewed as a single scratch-pad memory (SPM) bank with
constant access time of 12-cycles, (2) the L1I cache is not used, (3) an 8-way
associative L1D cache.

The pipeline is composed of usual stages: the Fetch stage loads the instruc-
tion from the L2 cache (since the L1I is deactivated) and can store up to 12
instructions in the instruction queue IQ. The Dispatch stage pulls part of these
instructions and stores them in the Complete queue GIQ. This queue can keep
at most 6 instructions and dispatch 3 instructions. The instructions are then
distributed to the different functional units (FU). There are 3 parallel integer
units IU1 i, i = 1, . . . , 3 for operations on registers and immediate, a unit IU2
for multiplication and division, a load and store unit LSU for the memory ac-
cesses and a dedicated branch prediction unit BPU. During the execution, the
instructions are stored in the completion queue CQ of size 16. The final stage is
the completion unit CU which extract instructions from CQ and the instruction
changes to the registers.

IQ(12) 

1 

4 3 3 3 
GIQ(6) 

GQ(16) 

pipeline 

Fig. 2. PowerPC pipeline

We have made some simplifications. First, we assume that the instructions
only handle integer (no float and no vector). Second, we did not encode the



Deterministic Execution Model on COTS Hardware 103

GIQ. The purpose of this queue is to reduce contention on the IQ. Without the
GIQ, the IQ becomes full faster. So our model is more pessimistic than the real
pipeline and generates a small overestimation of the WCET.

Integration in the Development Process. The WCET is computed before
the allocation, therefore addresses are not known. It’s not a real matter since,
whatever will be the final allocation, the upper bound remains the same. We
computed the WCET of each task with addresses chosen by the gcc compiler.

Otawa computed the WCET of the avionics application [3] which is composed
of 762 tasks in less than 2 hours.

3 Slicer

The mapping problem consists in assigning (allocating) each task to an execu-
tion slice such that all functional (precedence and deadline) and non functional
(memory and processor capacities) constraints are met. This problem is a vari-
ation of the bin packing problem which is a NP-complete problem. We have
addressed a similar problem in [3] for a distributed architecture. The novelty
stands in:

– we consider additional dimensions. Indeed, the slicer generates the memory
address allocation for the instructions and a mapping of variables within
memory blocks. The blocks must be stored in the cache lines according to
the associativity.

– we have developed an ad hoc constraint resolution code since the solvers
were not able to treat the problem, the size of which was too huge.

Note that the constraints are architecture dependent since they must encode the
cache characteristics such as the properties of associativity. If a task overflows
the capacity either of the L2 or the L1D cache, it has to be split into several
sub-tasks with the same period and deadline, and with additional precedence
constraints.

System model. The system model consists of a set of periodic tasks communi-
cating via shared data and subject to dependencies. Such an applicative may be
the result of a data-flow specification associated with primitives on the system
design. It is the case, for instance, of a specification in Simulink [15] coupled
with a multithreaded code generator (such as Real-time workshop-embedded
coder from the MathWorks or TargetLink from dSpace). It is also the case of a
specification in Lustre [12] extended with the operators and the relaxed syn-
chronous hypothesis of [6]. A last example is a specification in Prelude [8]
which aims at describing multiperiodic data-flow functions.

Definition 1 (System model). A system S is a tuple 〈F ,V ,R〉 such that:

1. F = {f1, . . . , fn} is a finite set of tasks where each task is a terminating
sequential program described by:



104 F. Boniol et al.

(a) size code: (resp. wcet:) F → N associates to each task fi the number of
memory lines required to store the code of fi (resp. its wcet, for instance
computed by Otawa);

(b) T : (resp. D :) F → N provides the period of a task (resp. the relative
deadline). We assume D(fi) ≤ T (fi);

2. V = {v1, . . . , vk} is a finite set of data consumed and produced by fi with:
(a) size var: V → N associates to each data its size in bytes;
(b) in: F → 2V (resp. out: S → 2V) gives the set of data consumed (resp.

produced) by each task. We assume that each data is produced by at most
one function: ∀i, vi ∈ out(fk) ∩ out(fl) =⇒ k = l;

(c) I ⊆ V (resp. O ⊆ V) is the set of inputs from (resp. outputs for) the
environment;

3. R ⊆ F × F is a relation of precedence relating tasks with the same period.
If (fi, fj) ∈ R, this means that fi must always execute before fj. In the
following, we only consider causal systems, i.e., such that the precedence
relation defines an acyclic graph.

Sliced code. The slicer is an off-line algorithm which computes a mapping (if
any exists) of a system compliant with definition 1 onto a sliced architecture. The
result, called sliced code, statically defines the addresses of the instructions and
data in RAM, the slices where tasks execute, the slices where I/O are emitted
and a pattern that is repeated infinitely.

Definition 2 (Sliced code). Let S = 〈F ,V ,R〉 be a system and P a slice
scheduling, a sliced code is defined by 〈H, addr c, addr v, alloc, allocio〉 where:
1. H is the length of repetition (it is a multiple of the length L of P),
2. addr v: V → N associates an address to each data,
3. addr c: F → 2N associates to each task fi a set of size code(fi) addresses,
4. alloc: F → 2[1,n]×[1,H/L] indicates on which slices the task fi executes,
5. allocio: I ∪O → 2[1,n]×[1,H/L] indicates on which communication slices each

input is stored in the RAM and each output is emitted on the peripheral.

Example 1. Let us consider the system:

F
(name,(code size, wcet)) V R

10 ms 20 ms 40 ms (name,size,producer,consumers)

f1
1 (10,1) f2

1 (5,0.5) f3
1 (15,1.5) v0 12 f1

1 (f3
1 ,f

1
2 ,f

1
4 ) f1

1 f1
2

f1
2 (10,1) f2

2 (10,1.5) f3
2 (20,3) v1 15 f2

1 (f3
1 ,f

1
1 ) f2

1 f2
2

f1
3 (10,1) f2

3 (3,0.3) v2 20 f3
1 f3

2

f1
4 (3,0.3) i1 10 (f1

1 ,f
2
1 )

f1
5 (3,0.4) o1 12 f2

2

A sliced code for the scheduling of Figure 1 is given by 〈40, addr c, addr v, alloc,
allocio〉 where:
– addr c(f j

i ) = {li,j1 , . . . , li,j
size code(fj

i )
} where li,jk is a line (or a row);



Deterministic Execution Model on COTS Hardware 105

– addr v(vi) = ai with ai ∈ li (the address ai is in line li), addr v(i1) = a
with a ∈ l and addr v(o1) = a′ with a′ ∈ l′. The lines satisfy the constraints
l0 = l1 = l (v0, v1 and i1 are stored in the same line) and l2 = l′;

– alloc and allocio are described below on [0,20]:
slicei,1 slicei,2 slicei,3 slicei,4

core 1 f1
1 ; f

1
2 f1

5 ; f
2
3 ; f

3
1 f1

1 ; f
1
2 f1

5

core 2 f1
3 ; f

1
4 ; f

2
1 f2

2 f1
3 ; f

1
4 ; f

3
2

com1,1 com2,1 com1,2 com1,3 com2,3 com1,4

i1, o1 i1

We can check for instance on slice1,1 that the constraints are fulfilled: size code
(f1

1 )+ size code(f1
2 ) = 20 lines (L2 has a capacity of 1-Mbyte and a line requires

64 bytes), wcet(f1
1 ) + wcet(f1

2 ) = 1.5 ≤ 2, size var(v0) + size var(v1) = 27 bytes
(L1 has a capacity of 32 kbyte). Caches are 8-way set-associative. Let f : L →
[1, 8] be the function that gives the set where a line l ∈ L is stored. We have
∀c ∈ [1, 8], (Σi(f(l

1,1
i ) = c) + Σi(f(l

1,2
i ) = c)) ≤ 8 (no more than 8 lines belong

to the same set).

We have implemented a depth-first search algorithm. It tries to allocate each
task in an execution slice e by verifying all the capacity constraints such as∑

i∈e wcet(fi) ≤ length(e). Once a solution is found, it computes an address
mapping that respects the cache associativity. Although the mapping problem is
NP-complete, the implemented algorithm was successfully applied on the avion-
ics applications. It finds more than 1000 solutions in less than 1s.

4 Wctt of a Communication Slice

Once the sliced code has been generated, we know exactly which data are flushed
or fetched and which cores and peripherals access concurrently the RAM in a
given communication slice. The objective is to compute the worst case time for
flushing (resp. fetching) all the data. The wctt computation accuracy depends
on the accuracy of the architectural description.

4.1 Hardware Characteristics

As for the wcet computation, we first have to describe the micro-architectural
behaviour of any access to the memory which involves the cores, the MCM, the
memory controller and the RAM.

Memory behaviour. A reference (or memory reference) denotes a request
generated by a core, such as a load or a store to a memory location. A RAM
[18] is a 3-dimensional storage component organised in banks, rows (or memory
pages) and columns. A reference can then be seen as a triplet (num bank, num
row, num column). The timing behaviour of a memory can be represented as
follows:

action timing

row activation ’A’ ta
bank precharge ’P’ tp
write ’W’ tw
read ’R’ tr
refresh action ’REF’ tref
minimum time between ’P’ ti



106 F. Boniol et al.

Actions happen in a given order: initially a bank is idle. Then, if there is a
reference in the controller FIFO, the controller first asks for an activation A and
it takes ta cycles for the RAM to store the row in the buffer. Then, the controller
emits a command R or W which takes tr or tw cycles for the RAM to execute. If
there is a second reference in the same bank and in the same row, the controller
asks directly for the read or write, but if it is on a different row, the controller
first asks for a precharge P which takes tp cycles, then for an activation and
finally emits the command. There is a constraint on two successive precharges:
they must be spaced of ti cycles. There is also a price for switching from a read
to a write and vice versa but this never occurs since we distinguish the requests.
The banks work independently and can store a row in their local buffer.

Refresh actions occur regularly on the DDR for physical reasons. This happens
nbref times during a duration of Iref units of time. When a refresh occurs, all the
banks are precharged, refreshed and left in the idle state.

Requests and data paths for the memory. The cores have a FIFO of size
5 (resp. 8) for emitting the read requests (resp. the data to flush). The MCM
has two FIFOs of size 8 for storing the requests of each core (which has been
represented as a 16-cell FIFO). The MCM has also a 16-cell FIFO for the data
exchanged with the RAM. The size of the FIFO of the controller is 4.

CPU
0 [’R’,0,1,3]
1 [’R’,0,1,5]
2 [’R’,0,0,5]
3 [’R’,0,0,3]
4 [’R’,0,0,7]
X [’R’,0,0,6]

MCM
x [’R’,0,1,3]
2x [’R’,0,1,5]
3x [’R’,0,0,5]
4x [’R’,0,0,3]
5x [’R’,0,0,7]

tX=max(X+x,6x) [’R’,0,0,6]

Ctrl
t1=x [’A’,0,1]
t2=t1+ta [’R’,0,1,3]
t3=max(t2+tr ,2x) [’R’,0,1,5]
t4=max(t3+tr ,3x) [’P’,0,1]
t5=t4+tp [’A’,0,0]
t6=t5+ta[’R’,0,0,5]
t7=max(t6+tr ,4x) [’R’,0,0,3]
t8=max(t7+tr ,5x) [’R’,0,0,7]
t9=max(t8+tr ,tX) [’R’,0,0,6]

X=t2+d [0,1,3],X1=max(t3+d,X+d) [0,1,5], X2=max(t6+d,X1+d) [0,0,5],
X3=max(t7+d,X2+d) [0,0,3], X4=max(t8+ d,X3+d) [0,0,7], X5=max(t9+d,X4+d) [0,0,6]

(a) Same core, same bank

CPU1
0 [’R’,0,1,3]

CPU2
0 [’R’,1,1,3]

MCM
x [’R’,0,1,3]
2x [’R’,1,1,3]

Ctrl
t1=x [’A’,0,1]
t2=t1+ta [’R’,0,1,3]

t′1=

⎧
⎪⎨

⎪⎩

x + ta + 1

if 2x = x + ta
2x otherwise

[’A’,1,1]
t′2=2x+ta [’R’,1,1,3]

t2+d [0,1,3]

max(t2+2d,t′2+d) [1,1,3]

(b) 2 cores, 2 banks

Fig. 3. Timing for a series of read

Figure 3 (a) gives the time behaviour of the requests and the data for a
series of read. The core emits 6 requests: since the FIFO is of size 5, the first 5
requests are emitted in sequence and the 6th cannot be emitted as long as the
first requested data is not received by the core. The timings in the boxes describe
the time when the request or data is output. For instance, the CPU emits at
0 the request [’R’,0,1,3] (access to 0: num bank, 1: num row, 3: num column).
The core can send a request every cycle. The MCM acts like a queue with a
rate x of emission. The first request received at 0 by the MCM is emitted to the
controller at x, the second received at 1 can start to be treated at x and requires
x to be transmitted. The controller receives the first request at x, since the bank
is idle, it first asks for an activation ’A’ and after ta for a read ’R’. The second
request is available in the controller at 2x and the controller can start to treat
it at t2 + tr, this is the reason why the ’R’ is launched at t3 = max(t2 + tr, 2x).
The value of [0,1,3] is sent to the CPU and arrives at X = t2 + d where d is the
output rate of the data bus which is also a FIFO queue. The value of [0,1,5] is



Deterministic Execution Model on COTS Hardware 107

therefore emitted after the previous data was sent at X and after being emitted
by the RAM at t3.

When several components read or write in a same communication slice, there
are several possible interleavings. The requests are first serialised in the MCM.
When reaching the controller there may exist several concurrent scenarii:

– the RAM allows several rows to be opened at the same time. In that case,
it reduces the number of ’P’ and ’A’,

– the components access different banks as shown in figure 3 (b),

– the component access different controllers (when the system includes several
memory controllers).

A refresh occurs at any time and closes all the banks. At worst, it is inserted
between two reads in the same row and the local timing cost is tp + ta + tref.
This cost may then be absorbed in the output FIFO and may not impact the
emission of the data.

4.2 Wctt Computation

In this section, we present a solution for computing tight wctt. A first over-
approximation is to determine the worst case times tmax

read for a memory read
or tmax

write for a write; and then multiply by the number of reads and writes.
According to the previous description, the worst case occurs when the MCM
FIFOs are full and the RAM is opened in a bad row. We obtain for instance
tmax
read = 16x+ti+tp+ta+16d. This solution entails a very high over dimensioning.
To avoid it, we formally modeled the exact behaviour with a network of timed

automata using Uppaal. For the MPC8641D, we have ta = 8, tp = 8, tw = 4,
tr = 4, tref = 64, ti = 34, x = 6 and d = 12. We know statically which data are
flushed (resp. read): we store those data as 2 lists (one for each core and one for
a peripheral) with the bank and row numbers. Let us illustrate this idea for a
flush slice. There are 2 automata:

1. The first represents the exchanges between the MCM and the controller.

The loop on the initial state is non deterministic and allows all the possible
interleaving between the components emission. Data is emitted at exactly 12
if the memory is available or is postponed until the memory becomes free;



108 F. Boniol et al.

2. The second models the memory with 2 simultaneous open pages.

For modelling the data exchange between the controller and the RAM, we
use an automaton synchronisation, which syntax in Uppaal is fl? for the
receiver and fl! for the emitter. After the synchronisation, writing takes 4
cycles if the page is opened. If the last prefetch occurs more than 34 cycles
ago then it takes 20 cycles otherwise it takes 20 cycles plus the difference
between 34 cycles and the last prefetch of the row.

Using this model, we can formally verify that the flush is done by simply verifying
that the global clock never exceeds the bound which is expressed by A[](h ≤
length). Since, the computation does not take into account the refreshes, we add
a penalty by counting the maximal number of refreshes during a slice. Therefore,
we just need to add a constant cost.

We apply the wctt evaluation on the case study. For small communication
slices, the model checker succeeds but as soon as the number of data grows, it
encounters the combinatorial explosion.

5 Conclusion

The aim of this article was to propose a development cycle for multicore COTS
under time triggered execution model. We have presented several tools for study-
ing and programming such an architecture. The results produced by those exper-
iments encourage us to go a step further. We are currently applying the method
on an open source avionics application which controls the longitudinal behaviour
of an aircraft [5]. Future work mainly concerns two directions. The first perspec-
tive is to improve the wctt using an ILP (integer linear programming) approach
which seems to be more suitable for this kind of problem. The second one aims
at studying the backtrack (step 4). If the wctt exceeds the bounds, the slicer
must provide a new solution. Providing a new solution is a difficult problem.
Removing a single mapping will not give hints on the intrinsic overflow.

References

1. Ballabriga, C., Cassé, H., Rochange, C., Sainrat, P.: OTAWA: An Open Toolbox
for Adaptive WCET Analysis. In: Min, S.L., Pettit, R., Puschner, P., Ungerer, T.
(eds.) SEUS 2010. LNCS, vol. 6399, pp. 35–46. Springer, Heidelberg (2010)



Deterministic Execution Model on COTS Hardware 109

2. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: UPPAAL 4.0. In: Proceedings of the 3rd International Conference
on the Quantitative Evaluation of SysTems (QEST 2006) , pp. 125–126. IEEE
Computer Society (2006)

3. Boniol, F., Hladik, P.-E., Pagetti, C., Aspro, F., Jégu, V.: A Framework for Dis-
tributing Real-Time Functions. In: Cassez, F., Jard, C. (eds.) FORMATS 2008.
LNCS, vol. 5215, pp. 155–169. Springer, Heidelberg (2008)

4. Chattopadhyay, S., Roychoudhury, A., Mitra, T.: Modeling shared cache and bus
in multi-cores for timing analysis. In: 13th International Workshop on Software
Compilers for Embedded Systems (SCOPES 2010), pp. 1–10. ACM (2010)

5. Chaudron, J.-B., Saussié, D., Siron, P., Adelantado, M.: Real time aircraft simu-
lation using HLA standard - an overview. In: Proceedings of the First Simulation
in Aerospace Conference - Toulouse, France (April 2011)

6. Curic, A.: Implementing Lustre Programs on Distributed Platforms with Real-
Time Constraints. PhD thesis, Université Joseph Fourier, Grenoble (2005)

7. Ernits, J.: Memory arbiter synthesis and verification for a radar memory interface
card. Nordic J. of Computing 12, 68–88 (2005)

8. Forget, J., Boniol, F., Lesens, D., Pagetti, C.: A real-time architecture design lan-
guage for multi-rate embedded control systems. In: SAC, pp. 527–534. ACM (2010)

9. Freescale. e600 PowerPC - Reference Manual (2006)

10. Freescale. MPC8641D: Integrated host processor family reference manual (2008)

11. Gries, M.: Modeling a memory subsystem with petri nets: A case study. Hardware
Design and Petri Nets, 291–310 (2000)

12. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow
programming language lustre. Proceedings of the IEEE 79(9), 1305–1320 (1991)

13. Heckmann, R., Ferdinand, C.: White paper: WCET prediction by static program
analysis (2009)

14. Liu, I., Reineke, J., Lee, E.A.: A PRET architecture supporting concurrent pro-
grams with composable timing properties. In: 44th Asilomar Conference on Signals,
Systems, and Computers (November 2010)

15. T. Mathworks, Simulink: User’s Guide

16. Metzlaff, S., Mische, J., Ungerer, T.: A real-time capable many-core model. In: Pro-
ceedings of the 32nd IEEE Real-Time Systems Symposium (RTSS 2011), Session
Work in Progress (2011)

17. Pellizzoni, R., Betti, E., Bak, S., Yao, G., Criswell, J., Caccamo, M., Kegley, R.:
A predictable execution model for COTS-based embedded systems. In: 17th IEEE
Real-Time and Embedded Technology and Applications Symposium, RTAS 2011
(2011)

18. Rixner, S., Dally, W.J., Kapasi, U.J., Mattson, P.R., Owens, J.D.: Memory access
scheduling. In: 27th International Symposium on Computer Architecture (ISCA
2000), pp. 128–138 (2000)

19. Rochange, C., Sainrat, P.: A Context-Parameterized Model for Static Analysis of
Execution Times. Transactions on High-Performance Embedded Architecture and
Compilation 2(3), 109–128 (2007)

20. Schranzhofer, A., Chen, J.-J., Thiele, L.: Timing analysis for TDMA arbitration
in resource sharing systems. In: 16th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS 2010), Stockholm, Sweden (2010)



110 F. Boniol et al.

21. Skillicorn, D.B., Talia, D.: Models and languages for parallel computation. ACM
Computing Surveys 30, 123–169 (1998)

22. Ungerrer, T., Cazorla, F.J., Sainrat, P., Bernat, G., Petrov, Z., Cassé, H.,
Rochange, C., Quinones, E., Uhrig, S., Gerdes, M., Guliashvili, I., Houston, M.,
Kluge, F., Metzlaff, S., Mische, J., Paolieri, M., Wolf, J.: MERASA: Multi-core ex-
ecution of hard real-time applications supporting analysability. IEEE Micro. 30(5),
66–75 (2010)

23. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenström, P.: The worst-case execution-time problem
- overview of methods and survey of tools. ACM Trans. Embed. Comput. Syst. 7,
36:1–36:53 (2008)


	Deterministic Execution Model on COTSHardware
	Introduction
	Challenge for Embedding a Multicore COTS
	Contribution
	Related Work

	Wcet of an Execution Slice
	Reminder on Uniprocessor wcet Estimation
	Application to a Sliced Architecture

	Slicer
	Wctt of a Communication Slice
	Hardware Characteristics
	Wctt Computation

	Conclusion
	References




