
 CacheScouts: Fine-Grain Monitoring of Shared Caches in CMP Platforms

Li Zhao, Ravi Iyer, Ramesh Illikkal, Jaideep Moses, Srihari Makineni and Don Newell
System Technology Lab, Intel Corporation, Hillsboro, Oregon

Contact: {li.zhao, ravishankar.iyer}@intel.com

Abstract
As multi-core architectures flourish in the
marketplace, multi-application workload scenarios
(such as server consolidation) are growing rapidly.
When running multiple applications simultaneously on
a platform, it has been shown that contention for
shared platform resources such as last-level cache can
severely degrade performance and quality of service
(QoS). But today’s platforms do not have the capability
to monitor shared cache usage accurately and
disambiguate its effects on the performance behavior
of each individual application. In this paper, we
investigate low-overhead mechanisms for fine-grain
monitoring of the use of shared cache resources along
three vectors: (a) occupancy – how much space is
being used and by whom, (b) interference – how much
contention is present and who is being affected and (c)
sharing – how are threads cooperating. We propose
the CacheScouts monitoring architecture consisting of
novel tagging (software-guided monitoring IDs), and
sampling mechanisms (set sampling) to achieve shared
cache monitoring on per application basis at low
overhead (<0.1%) and with very little loss of accuracy
(<5%). We also present case studies to show how
CacheScouts can be used by operating systems (OS)
and virtual machine monitors (VMMs) for (a)
characterizing execution profiles, (b) optimizing
scheduling for performance management, (c) providing
QoS and (d) metering for chargeback.

1. Introduction
With dual-core and quad-core processors [8][9] already
in the marketplace for client and server platforms, we
have truly entered the era of chip-multiprocessor
(CMP) platforms. All major CPU manufacturers have
adopted the CMP architecture and have announced
plans to aggressively increase the number of cores
integrated on a single chip [10] [14][15]. There are two
ways of taking advantage of the high degree of thread
parallelism enabled by CMP – (a) parallelize
applications to be highly multi-threaded and (b) run
multiple applications simultaneously. In this paper, we
focus more on the latter approach and investigate
multi-application workload scenarios on CMP

platforms. The rapid adoption of virtualization [29] as
a means to consolidate multiple applications on to a
single server platform is a prime example of this
approach. In addition, the usage of client platforms
(desktops and laptops) is also becoming richer with
multiple applications running simultaneously.

When running multiple applications simultaneously
on client and server platforms, the key performance
challenge is that of platform resource contention. As
more cores are enabled, contention for compute
resources reduces. However, the contention shifts to
the rest of the platform because the compute cores
continue to share critical platform resources such as
cache, memory and I/O. Several recent studies [1]
[4][5][7][16][18][19] have shown that contention for
shared last-level cache can cause significant loss in
performance, determinism and quality of service
(QoS). However, today’s CMP platforms have no
support to monitor the shared cache resource and to
provide an understanding of resource usage breakdown
amongst the multiple applications running
simultaneously. The knowledge of resource usage is
the key to disambiguating the impact of sharing on
each individual application’s performance, to allow
OS/VMM make optimal scheduling decisions and for
metering and chargeback.

In this paper, our goal is to propose low-overhead
fine-grain shared cache monitoring techniques for
CMP platforms. We start by describing the four key
usage models namely profiling/characterization,
scheduling and performance management, QoS and
metering/chargeback, and show that their monitoring
requirements essentially include (a) occupancy – how
much space is being used and by whom, (b)
interference – how much contention is present and who
is being affected and (c) sharing – how are
applications/threads cooperating. We then compare and
contrast several alternatives for this shared cache
monitoring in terms of overheads, granularity and
accuracy. We propose the CacheScouts monitoring
architecture consisting of novel tagging (with software-
guided IDs) and sampling mechanisms (with set
sampling) to achieve per application monitoring at low
overhead and with very little loss of accuracy. We

Memory Subsystem

Shared L2

C0 Cn-1

L1 L1

Shared L2

C0 Cn-1

L1 L1

1x

2x

3x

4x

5x

mcf art

eq
ua

k
vp

r

am
m

p
fac

er
bz

ip2
luc

as
vo

rte
ga

lge
wup

wi

ap
plu

sw
im

pa
rse

mgr
id

tw
olf gc

c
fm

a3
d

ga
p
pe

rlb cra
ft

ap
si
mes

a
six

tr
gz

ip
eo

n

R
un

-ti
m

e
sl

ow
do

w
n

mcf art equake bzip2 wupwise swim eon
ammp applu appsi crafty facerec fma3d galgel
gap gcc gzip lucas mesa mgrid parser
perlbmk sixtrack twolf vortex vpr

20% of app
pairs exhibit
10 to 20%
slowdown

30% of app
pairs exhibit
20% to 5X
slowdown

Rest exhibit
<10%

slowdown

 (a) Typical CMP architecture (b) Example of cache/memory contention

Figure 1. CMP architecture and cache/memory contention

evaluate CacheScouts in two important workload
contexts (virtualized CMP servers running three server
benchmarks and multi-application CMP client
platforms running multiple SPEC CPU2000
applications) and show its efficacy in determining
execution profiles. Finally, we perform case studies to
show how CacheScouts monitoring data will be used
dynamically for (a) optimized scheduling /
performance management, (b) quality of service
guarantees and (c) metering resource usage for
chargeback. We believe that this paper is the first to
propose shared cache monitoring mechanisms for CMP
architectures, evaluate them for client/server workload
environments and show their use along three very
different vectors.

The rest of this paper is organized as follows.
Section 2 presents important usage models that
necessitate monitoring feedback and describes related
work in this area. Section 3 compares/contrasts several
approaches to implement shared cache monitoring and
introduces the CacheScouts architecture. Section 4
evaluates the CacheScouts monitoring options for two
multi-application workload scenarios. Section 5 covers
detailed case studies that show how these monitoring
hooks can be employed by operating systems and
virtual machine monitors for better scheduling and
performance management, better quality of service and
more accurate metering and chargeback. Section 6
concludes the paper and covers future work in this
area.

2. Motivation and Background
In this paper, we assume a typical CMP architecture as
illustrated in Figure 1(a). As shown in the figure, there
are N cores in each die with private L1 caches and a
shared L2. Our assumptions on workload scenarios are
basically multiple heterogeneous applications running
simultaneously on client platforms or multiple virtual
machines running simultaneously on server platforms.

When multiple applications or virtual machines
(VMs) run simultaneously on such CMP architectures,
contention for shared cache space and memory
bandwidth is bound to occur. To understand the
performance effect of this contention, we performed a
simple experiment. We ran SPECCPU2000
applications on the Core 2 Duo desktop (2 cores
sharing 4MB of last-level cache) in two modes: (a)
dedicated mode where we run one application on one
core in the platform and (b) pair-wise mode where we
run the application on one of the cores and run another
application on the other core. Figure 1(b) shows the
slowdown in terms of the ratio of execution time in
pair-wise mode over that in dedicated mode. As one
can observe, the slowdown can be as high as ~4.76X
(when mcf is running with swim). Overall, we observe
that in 30% of the pairs, the slowdown ranges from
1.2X to 5X. We have performed similar studies with
virtualized server workloads running simultaneously
and observed similar slowdown effects.

Since shared cache contention is clearly high,
shared cache monitoring is highly desirable. In
particular, the following key usage models motivate
the need for shared cache monitoring in both client and
server platforms configurations:

[1] Performance Profiling and Characterization:
When an application runs alone on a platform, the
resources in that platform are dedicated to its execution
and it is possible to characterize and model resultant
application performance. Software developers tend to
assume this is the case and optimize for best
performance. However, when multiple applications or
VMs run simultaneously (two applications running on
Core 2 Duo in Fig. 1b for example), it is difficult to
determine the resources like cache space that ends up
being given to each individual application. The
situation gets worse as the number of applications
running increases and is more than the number of
cores. Performance monitoring counters that are
available in today’s platform only provide cache
misses on a per core basis. In order to better

CMP Shared Cache Monitoring

Performance Profiling
and Characterization

How much cache does
an application end up
with and how does it
affect its performance?

OS/VMM Scheduling
for Perf Management

Quality of Service
/ Perf Isolation

Metering for
Chargeback

Which core/cache
should I schedule
an application on?

How do I provide an
application cache
space in a more
deterministic way?

How do I charge the
customer/user based
on cache resource
consumption?

Figure 2. Usage models for CMP shared cache monitoring

characterize the effect of cache contention on each
application’s individual performance, the minimum
amount of information needed is the cache occupancy
(i.e. number of cache lines consumed) and misses on a
per application basis during the execution time. This
data can be then incorporated into profiling tools like
Vtune [11] or Oprofile [17] for use in dynamic
optimization by developer or administrator.

[2] OS/VMM Scheduling/Performance
Management: The job of OS or VMM is to schedule
applications or VMs respectively on the cores for
maximum performance efficiency. Ideally, there are
three aspects that the scheduling policy should take
into account in a CMP platform with multiple shared
caches: (a) it is better to schedule applications that
contend less with each other on the same cache, (b) it
is better to schedule applications or threads that share
data on the same cache and (c) it is better to affinitize
applications to caches if their working set is still
available on the cache from the previous scheduling
interval. However, the OS/VMM has almost no
visibility into cache contention or sharing statistics in
today’s CMP platform. As a result, OS/VMM
scheduling policies do not have the ability to determine
which applications should be co-scheduled on the cores
sharing the same cache. Researchers [27][3][25][18]
have attempted to optimize scheduling by using crude
indicators for affinity (such as time elapsed between
scheduling intervals) and cache destructiveness (such
as high miss rate) for example. However, all of the
literature points out that this is not ideal and the crude
mechanisms were used primarily due to the lack of
shared cache monitoring feedback from the hardware.

[3] Quality of Service and Performance
Isolation: In a client environment, there are several
foreground and background applications running
simultaneously. Typically, the foreground applications
are given higher priority in terms of core scheduling.
However, since there are multiple cores available in
CMP architectures, both foreground and background
application will run simultaneously. Since the

background application could steal cache/memory
resources and affect the foreground application, it is
important to implement QoS mechanisms in the cache
that provide preferential treatment and a reasonable
degree of performance isolation. Similar QoS and
performance isolation concerns [2][5][12][20][28] are
already becoming apparent in datacenter server
environments where VMs of differing priorities based
on service level agreements are running
simultaneously. In order to guide cache space
allocation based on priorities provided by the software
layer (OS or VMM) [5][12][20], it is important for the
OS/VMM to know how much of the resource (cache
space in this case) is being used by each application.
As a result, shared cache monitoring is very critical to
QoS and performance isolation.

[4] Metering for Chargeback: A common model
for hosted server environments is that of running
multiple customer applications (potentially in multiple
virtual machines) simultaneously on the same platform
and determining how the platform resources were used
by each application. The resource utilization is used to
determine how the customer will be charged for the
hosting service. Today, the only resources considered
for chargeback are number of cores, memory capacity
and disk space. Since shared cache contention can
affect performance significantly, it is important to take
shared cache space into account when determining the
chargeback. This again points to the need for shared
cache monitoring and the need for determining how
cache space usage plays a role in the overall
chargeback model.

3. CacheScouts: Shared Cache Monitoring

In previous section, we described four usage models
for shared cache monitoring techniques. While the
usage models are quite different, the underlying
monitoring requirements are fairly similar in nature. In
this section, we start by describing the underlying
monitoring requirements, CacheScouts goals and

considerations. We then delve into the overall
CacheScouts architecture and compare/contrast
implementation options.

3.1. Goals & Requirements
The goal of the CacheScouts architecture is to provide
sufficient monitoring data as feedback to guide the
questions listed in Figure 2. Based on the usage
models, we believe that the following monitoring
requirements should be the primary basis for
CacheScouts:

[1] Cache Occupancy per Application: One of
the fundamental requirements for most usage models is
the ability to accurately estimate the amount of cache
space consumed by each application during its runtime.
This requires that the number of cache lines be counted
on a per application basis and be exposed to the
OS/VMM so that it can monitor the data at regular
intervals.

[2] Cache Interference per Application:
Another important monitoring requirement is that of
capturing the amount of cache interference experienced
between applications that are co-scheduled on the same
shared cache. For example, consider one application
A1 co-scheduled with three other applications A2, A3
and A4. We need to keep track of the number of times
that A1’s cache lines are evicted by A2, A3 or A4. In
addition, it will also be useful to keep track of how
often A1 evicted A2, A3 or A4’s cache lines.
Ultimately a NxN (4x4 in this example) matrix of
eviction would provide more detail on how the
evictions are distributed.

[3] Cache Sharing per Application: If multiple
applications running simultaneously are sharing data in
memory, then it is important to keep track of how often
a cache miss from one application finds the cache line
already brought in another cache by either the same
application or another application. This allows the OS
to identify applications that should be co-scheduled as
well as identify applications that migrate from one
cache to another and suffer cold cache misses
repeatedly.

3.2. CacheScouts Architecture
In order to satisfy the monitoring requirements listed in
the previous section, we propose the CacheScouts
shared cache monitoring architecture as illustrated in
Figure 3. We describe the architecture first without
constraints and then later impose the practical
constraints to determine feasible implementation
options. The architecture can be decomposed into two
major components:

[1] Cache Line Tagging: In order to associate
cache lines with the application that is using the data, it

is required that we tag the cache lines with a
monitoring identity (MID) either when they are
allocated or when they are touched. This requires that
the cache/memory request generated by the core should
be tagged with the MID before it is sent to the shared
last-level cache. The overhead of tagging the request is
fairly low. However, the overhead of tagging each
cache line with its respective MID is the major
challenge that needs to be addressed for low-overhead
implementation. For example, for caches with 64 byte
cache lines, the overhead of a 10-bit MID (covering
1024 possible identities) incurs an overhead of ~2%.
While this may seem already low, considering that the
vast majority of a processor die (typically 40 to 60%)
is the last-level cache, more than 1% of the die will be
used up by these monitoring IDs. The basic challenge
is to keep the number of MIDs low, but allow the
coverage of many more applications to be tracked by
the software layer. Another basic challenge is to avoid
having to tag every cache line with the MID. Below,
we will discuss hardware-based and/or software-guided

(a) Monitoring IDs and Cache Line Tagging

App ID Occupancy Interfered Interfering Share

1
2

…..
N

Interference / Sharing Tables

1 2 …… N
1
2

…..
N

(b) Shared Cache Performance Arrays

Figure 3. CacheScouts Architecture

Core

App / OS/ VMM

Memory Request

Tagged with
Monitoring ID (MID)

Shared
Last
Level
Cache

Shared Cache
Performance
Arrays

Miss MID
Victim MID
Ext. Snoop MID

MID options and its implications on implementation
options.

[2] Shared Cache Performance Arrays: In order
to keep track of the occupancy, interference and
sharing on a per application basis, we need a new set of
shared cache performance arrays that need to be
updated when cache events of interest occur. Figure
3(a) describes the flow of information from the cache
to the shared cache performance arrays and Figure 3(b)
shows the detailed organization of the arrays
themselves. For each application (identified by MID),
we maintain the following four summary information:
• Occupancy: The number of cache lines currently

tagged by this application id. In order to
accomplish this, we need to increment the
occupancy counter when a new line is allocated
(upon a miss event) into the cache and decrement
the counter when a line is evicted (upon
victimization) from the cache.

• Interference: There are two forms of interference:
(i) how often an application gets evicted from the
cache by another application versus (ii) how often
it evicts a cache line of another application. The
summary performance array keeps track of both as
shown in Figure 3(b). This is accomplished by
incrementing these counters when the miss MID
and the eviction MIDs are different. In order to get
a more accurate picture of which applications were
causing the most interference, a more detailed
NxN matrix can also be maintained shown by the
second table in Figure 3(b). This table keeps track
of evictions caused by application X (row) on
application Y (column).

• Sharing: In order to determine cross-cache
sharing, we also keep track of the number of cache
misses that end up hitting in another cache. As a
result, the sharing count needs to be incremented
every time an external snoop (for a miss) returns a
valid snoop result with a corresponding MID from
the other shared cache in the platform. In order to
determine exactly which applications were
sharing, a more detailed NxN matrix is also
maintained as illustrated by the second table in
Figure 3(b).

The area overhead of the shared cache performance
arrays can be quite significant. Maintaining the
summary table for 1024 applications (or MIDs) for
instance requires about 16KB (~0.4% of a 4MB
cache). However, maintaining a 1024x1024 table for
the same number of applications begins to be
alarmingly area-intensive. As a result, it is important to
reduce the number of MIDs to a more manageable
quantity, but retain the accuracy and usability of these
shared cache performance counters. In the next few

sections, we discuss the implementation options that
attempt to reduce the area overhead significantly.

3.3. CacheScouts Implementation Options
In this section, we discuss practical implementation
options for the CacheScouts architecture. The main
motivation is to find an option that reduces the area
overhead significantly, but retains a usable level of
granularity and accuracy of the performance
monitoring.

3.3.1. Monitoring with Core MIDs

The simplest approach to maintaining occupancy is to
maintain it per core. Note that we use the term “core”
here to indicate a hardware thread. As a result, the
MID would essentially be the core id and therefore be
supporting very small number of IDs.

However, there are some serious limitations to this
approach. If the number of applications is more than
the number of cores, then it becomes very difficult to
identify whether a cache line was related to the
previous application context running on this core or the
current one. Since cache state is persistent across
multiple context switches, it is almost impossible to
determine which application is currently occupying the
cache. While additional counters could be maintained
to address this specific problem, there are no elegant
heuristics to solve the overall problem of overlaying
multiple applications on to the cores without any
software guidance. As a result, we rule out this
hardware-only approach to monitoring shared cache
usage.

3.3.2. Monitoring with Software MIDs

We believe that the most practical and usable solution
for monitoring cache space is based on software-
guided MIDs. This essentially allows the OS or VMM
to associate an MID with each application or virtual
machine when it is scheduled on to the core. The
software-guided MID can be specified in a control
register within the core so that it is saved and restored
across context switches. Since there are still a limited
number of MIDs (say 32 or 64), the OS or VMM can
appropriately recycle the MIDs amongst its running
applications and essentially enable sampling of a
subset of applications over any given period of time.

For the rest of the paper, we assume that 64
software-guided MIDs are reasonable to employ for
most commercial client and server environments. With
64 MIDs, the overhead of tagging each line in the
cache is moderately high (~1.25%). It is important to
look for novel mechanisms that further reduce this area
overhead in the cache.

3.3.3. Using Set Sampling Mechanisms

In order to reduce the overhead of shared cache
monitoring and avoid tagging every single line in the
cache with a MID, we propose the use of set sampling
in the cache. Set Sampling [6][26] has been shown to
be very effective in accurately representing the
behavior of the entire cache. Researchers have shown
that much less than 10% of the sets need to be sampled
to achieve significant accuracy in estimating cache
behavior. Here, we take advantage of set sampling to
reduce the overhead of maintaining MIDs. We choose
a random subset of sets in the cache and tag all of the
lines within these sampled sets with the MIDs. While
we independently evaluate (in Section 4) the number of
sets required for sufficient monitoring accuracy, we
expect that much less 10% of the sets will be required.
As a result, we can reduce the area overhead of MID-
enabled caches down to at least 0.125% (instead of
1.25% for the full cache). It should be noted that the
MIDs for the sampled sets will now be stored in a
separate structure because extending only a few of
cache line tags makes the cache layout irregular and
complex. At the same time, having a separate structure
is more flexible and modular as its design can be done
independent of the main cache design.

Figure 4. CacheScouts architecture using
software MIDs and set sampling

Overall, the combination of software-guided MIDs
and set sampling seems like a promising approach to
implement the CacheScouts architecture. Figure 4
summarizes the changes to the CacheScouts
architecture to implement software-guided MIDs and
set sampling.

4. Evaluating CacheScouts Options
In this section, we perform a detailed study of the
execution profile and cache performance behavior of
two important workload scenarios based on the
CacheScouts monitoring data.

4.1. Workloads and Simulations
To understand the behavior of simultaneous
applications and virtual machines running together, we
chose two configurations:
(1) Multi-programmed Configuration with 8 single-
threaded SPEC CPU2000 applications [23] running on
a 4-core architecture as shown in Figure 5. The 4-core
architecture resembles Intel’s Core 2 Duo-based quad-
core desktop platform. From the SPEC CPU2000 suite,
we chose the following eight benchmarks: swim, mesa,
mcf, gzip, eon, bzip2, art and apsi. This mix was
chosen to have some workloads that occupy lots of
cache, some that are memory-intensive and some that
need very little cache.
 (2) Virtualized Server Configuration with 3 multi-
threaded server benchmarks consolidated on an 8-core
architecture as shown in Figure 5. The 8-core
architecture resembles Intel’s latest server platform
with two Core 2 Duo-based quad-core processors. We
chose the following 3 server benchmarks to run
simultaneously.
 SAP SD/2T: SAP SD 2-tier [21] is a sales and

distribution benchmark to represent enterprise
resource planning (ERP) transactions.

 SPECjbb2005: SPECjbb2005 [24] models a
warehouse company with warehouses that serve a
number of districts.

 SPECjappserver2004: SPECjappserver 2004
[22] is a multi-tier server benchmark that
represents J2EE application servers.
SPECjappserver models the information flow
between an automotive dealership, manufacturing,
supply chain and order/inventory.

Since our primary interest is in cache performance,
occupancy, interference and sharing, we employed a
cache hierarchy simulator called CASPER [13].
CASPER was modified to maintain the monitoring
information (shared cache performance arrays) on a
MID basis. To simulate the scheduling of many
application threads on fewer cores, we simulated a
global scheduling queue of workload traces for each of

Shared
LLC MID in

Sampled

Shared Cache
Performance
Arrays

Miss MID
Victim MID
Snoop MID

Software-Guided
MIDs Core

App/OS/VMM

Memory Request

Filter Addresses to
Sampled Sets?

the above benchmarks. The traces were allowed to run
on available cores for a typical scheduling duration,
which is estimated based on the references and
instructions in the traces. We ensured that the traces
were long enough to capture the behavior of the
applications and to warm up the cache for the
associated statistics.

Figure 5. Simulation configurations

4.2. Capacity Profile using CacheScouts
We start by looking at the cache capacity profile for
both workload scenarios. Figures 6 and 7 show the
capacity data (fraction of the cache size) sampled at
regular frequent intervals (the x-axis). Figure 6 shows
the data for both caches on the 4-core architecture. It
can be observed that the distribution of cache resource
usage between the SPEC applications is quite
disparate. For example, mcf and art occupy large
portions of the first cache during the execution. On the
second cache, swim and mcf occupy significant
portions of the cache, with art occupying significant
space only in a few samples. Comparing the two
charts, we can also observe how applications (like art
and mcf) move from one cache to another and affect
cache behavior.

Figure 7 shows the same data for server workloads
on the 8-core architecture but only for one of the four
caches for brevity. The legend indicates the benchmark
name (multiple times for each of the four threads)
within the benchmark. The distribution of cache space
is less skewed in the multi-VM server configuration
since all the three server workloads are cache-sensitive
and use a lot of the cache space. At the same time, in
any given sample (a bar) the amount of cache can be
observed to be quite un-even cross the two benchmarks
simultaneously running on that cache.

Another way to look at the cache capacity is at the
scheduling points of the application (i.e. when it is
ready to be scheduled on the core). For example, let us
revisit the cache migration behavior of art in Figure 6.
From a visual comparison of the two charts, it is clear
that art migrates from cache 1 to cache 2 at the 35th
time sample. Since art has a large working set, it is
preferable to affinitize it to cache 1 instead of
migrating it to cache 2. In order to do so, it is important

to dynamically detect the working set size and allow
the scheduler to determine which application should be
affinitized and which should be migrated. Today, the
OS/VMM attempt to determine migration/affinitization
actions based on the time elapsed between schedule
points. CacheScouts provides direct cache capacity
monitoring to the scheduler for this purpose.

4.3. CacheScouts Interference Profile
Figure 8 and 9 show the cache interference data for
both workload scenarios. The data is shown on a per
application basis and for each scheduling duration
during which the application was running on the core
since no interference can occur when the application is
waiting to be scheduled. The bar illustrates the number
of misses that occurred for that application during the
scheduling duration. The bar is broken down into the
following conditions that can occur on a miss: (a)
“Find invalid line” -- an invalid line is found and the
line is allocated without conflicting other application,
(b) “Conflict Self” -- a victim is found and the victim
belongs to the same application and (c) “Conflict
Other” -- a victim is found and the victim belongs to a
different application. Figure 8 illustrates that three of
the five applications (art, mcf and swim) have a high
miss count. It can be further observed that swim
replaces others more often than itself, whereas mcf
replaces itself more than others. Figure 9 shows the
server data for 1 thread out of each benchmark. Among
the three benchmarks, SPECjbb has the highest miss
rate. However, even with a smaller miss rate, SAP is
almost as destructive as SPECjbb because it interferes
with others more than with itself. The measure of
destruction along with the capacity can be used to do
appropriate co-scheduling and migration by the
operating system. In section 5, we will show that this
interference and the previous capacity information can
be used effectively to re-schedule applications
dynamically and improve overall performance.

4.4. CacheScouts Sharing Profile
Figure 10 shows the cache sharing profile for the
server workloads since we already know that SPEC
applications do not share any data with each other. We
can see that SPECjappserver has the maximum amount
of sharing and therefore the threads belonging to
SPECjappserver should be co-scheduled together.
SPECjbb and SAP have small amounts of sharing and
it is not clear whether co-scheduling is necessary for
these workloads. In Section 5, we will show that using
CacheScouts feedback, we can optimize VMM
scheduling algorithms to take advantage of sharing by
co-scheduling relevant threads.

8 single-threaded
SPEC workloads

3 multi-threaded server benchmarks
(each with 4 threads)

4MB 4MB 4MB 4MB 4MB 4MB

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 6 11 16 21 26 31 36 41 46
Time interval

C
ac

he
 o

cc
up

an
cy

swim
mesa
mcf
gzip
eon
bzip2
art
apsi

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6 11 16 21 26 31 36 41 46

Time interval

C
ac

he
 o

cc
up

an
cy

swim
mesa
mcf
gzip
eon
bzip2
art
apsi

Figure 6. CacheScouts capacity profile for multi-programmed workloads (for both the caches)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 6 11 16 21 26 31 36 41 46
Time interval

C
ac

he
 o

cc
up

an
cy

sap
sjbb
sap
sap
sjas
sjbb
sjbb
sjas
sap
sjas
sjas
sjbb

Figure 7. CacheScouts capacity profile for multi-VM server workloads (1 of 4 caches)

0

5000

10000

15000

20000

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

eon gzip art mcf swim
Switch interval

M
is

se
s

pe
r

m
ill

io
n

in
st

ru
ct

io
ns

Conflict other
Conflict self

109954
103563

113713

Figure 8. CacheScouts interference data for

multi-programmed workloads (SPEC)

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

SPECjbb SPECjas SAP
Switching interval

M
is

se
s

pe
r

10
0K

 r
ef

er
en

ce
s find invalid line

Conflict other
Conflict self

Figure 9. CacheScouts interference data for

multi-VM workloads (Server)
4.5. CacheScouts Set Sampling Accuracy
When employing set sampling to reduce the overhead
of monitoring, it is important to determine how many
sets need to be sampled for reasonable accuracy.
Figure 11 and 12 show the set sampling accuracy in

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

SPECjbb SPECjas SAP
Switching interval

M
is

se
s

pe
r

10
0K

 r
ef

er
en

ce
s share with other cache

no share with other cache

Figure 10. CacheScouts sharing data for multi-VM

reporting cache capacity information for the SPEC
benchmarks and the server workloads respectively
during their scheduling intervals. The data is reported
in terms of average error rate (the % difference
between full cache and set sampling with varying
number of sets). As can be observed from the figure,
the error rate in most cases reduces significantly as the
number of sampled sets increases from 32 to 128 sets.
It should be noted that a 4M cache with 64 byte lines
and 16-way sets consists of 4096 sets. Employing 128
sampled sets out of 4096 is only 3.125%, which is
much lower than the 10% that was conservatively used
during the implementation discussion. For SPEC
workloads, the average error rate is 6% or less when
employing 128 sampled sets. It should also be noted
that the error appears to be higher for workloads like
eon because the fraction of cache capacity for these
workloads is already very negligible. For server
workloads (Figure 12), employing 128 sets provides an
error rate that is 4% or lower. Since most of this data is

being used only for performance optimizations, even
90% accuracy (or less than 10% error) is expected to
be more than sufficient.

0%

5%

10%

15%

20%

25%

apsi art bzip2 eon gzip mcf mesa swim

%
 E

rr
or

32 sets
64 sets
128 sets

Figure 11. CacheScouts set sampling

accuracy for SPEC workloads

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%

1 2 3 4 1 2 3 4 1 2 3 4

SPECjbb SPECjas SAP

%
 E

rr
or

32 sets
64 sets
128 sets

Figure 12. CacheScouts set sampling

accuracy for server workloads

5. CacheScouts Monitoring Use Cases
We now look at some detailed monitoring case studies
to show the value of CacheScouts monitoring feedback
provided to the OS/VMM.

5.1. Simple Scheduling Optimizations
We start by first attempting two simple scheduling

optimizations that require the use of CacheScouts. The
first one is that of detecting sharing between threads
and employing this knowledge to co-schedule sharing
threads on the same cache. A CacheScouts-aware
scheduler looks ahead in the queue and attempts to find
a waiting task that has significant sharing with the
other threads already running on other cores that share
the same cache. The CacheScouts sharing matrix
provides accurate information on sharing between
applications and therefore this is used by the scheduler
to perform this optimization. We experimented with
this approach by implementing a CacheScouts-aware
scheduler.

Figure 13 shows the resultant benefits as a function
of the lookahead length. Note that a lookahead length
of 0 is the base case with no optimizations. Using a
lookahead length of 3 improves the miss rate of
SPECjappserver by 20%, SAP by 18% and SPECjbb
by a negligible amount. It should also be noted that the

remote misses (misses that earlier found the data in a
remote cache) are the ones that reduce significantly.
The other misses stay roughly constant or increase
moderately.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 0 1 2 3 0 1 2 3

SPECjbb SPECjas SAP
Lookahead length

N
or

m
al

iz
ed

 m
is

s
ra

te

miss resolved in mem miss resolved in other caches

Figure 13. Benefits of sharing optimization for

server workloads

We experimented with a capacity-based
optimization for the SPEC workloads since we found
that they use the cache resource very disparately. Here,
the basic optimization is that of affinitizing threads to
caches where the working sets are still remnant even
after a few context switches. Typically, schedulers
attempt to perform affinitization based on time elapsed
between the previous context switch and the current re-
schedule. However, CacheScouts provides accurate
information on the working set of an application in the
cache even after it is de-scheduled from the core. As a
result, every time a scheduler attempts to find a task in
the queue to schedule on to a core, it can look ahead
deeper into the queue to find a task that still has the its
working set left in the cache. By doing so, the task will
not suffer a cold-cache effect and thereby improve in
performance. Figure 14 shows the benefits of
CacheScouts-based affinitization. From the chart, it
can be seen that the application with the largest miss
rate (art) improves by as much as 90%, which is offset
by an increase in miss rate for the next dominant
application (mcf). Overall, the average miss rate across
all applications reduces by 40%, which is a significant
improvement over the traditional scheduling algorithm.

We also performed another experiment by
implementing CacheScouts in a full-system execution-
driven simulator with timing information. We
employed the capacity and interference counters
available in CacheScouts to dynamically group
applications by sorting them in capacity/interference
order and co-scheduling one application from each end
of the sorted list. This helps because each cache ends
up with an application with a large working set (a very
destructive application) as well as a small working set
(a non-destructive application). We chose to run only
four SPEC applications (art, swim, crafty and eon)
simultaneously on the 4-core, 2-cache architecture

described earlier. Figure 15 shows the resultant
benefits of performing this optimization. We observe
performance benefits ranging from 7% to 26%. Thus
the overall throughput of the platform is improved
significantly by dynamic co-scheduling optimizations
based on CacheScouts capacity/interference.

0

0.2

0.4

0.6

0.8

1

1.2

apsi art bzip2 eon gzip mcf mesa swim average

M
is

s
ra

te
 n

or
m

al
iz

ed
 to

 a
rt

LA-0
LA-1
LA-2

Figure 14. Benefits of capacity optimizations

for SPEC workloads

0

0.2

0.4

0.6

0.8

1

1.2

1.4

art crafty eon swim

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t

Figure 15. Capacity/Interference-Aware

scheduling

5.2. Employing CacheScouts for QoS
In this subsection, we will investigate the use of
CacheScouts to guide QoS and performance isolation
mechanisms. QoS mechanisms have been proposed in
previous literature [5][12] to control the distribution of
cache resources to applications and virtual machines
with varying user importance or priorities. The first
step to enforcement is the knowledge of the resource
utilization on a per application basis. CacheScouts
enables this knowledge and allows the OS/VMM to
provide cache allocation threshold hints to the
platform. We set up a simple QoS experiment where
we prioritize art over all other SPEC applications in
the multi-programmed workload scenario. This is done
by setting the priority of all applications except art to
low priority and associating the low priority to limit its
consumption to a 40% capacity threshold. This ensures
that at least 60% of the cache is available to art at all
times. The replacement policy in the cache is
implemented by comparing the CacheScouts capacity
counters to the threshold value of 40%. Figure 16
shows the benefit of employing CacheScouts for QoS.

We can see that the cache miss rate of art reduces by
almost 40% at the potential expense of other
application performance. For example, mcf miss rate
increases by as much about 30% because it is
constrained in cache space whenever it runs with art.
Note that setting the limit to 40% for all other
applications except art has the potential to affect their
performance only when they are co-scheduled with art.

0

0.2

0.4

0.6

0.8

1

1.2

apsi art bzip2 eon gzip mcf mesa swim

M
is

s
ra

te
 n

or
m

al
iz

ed
 to

 a
rt No QoS

With QoS

Figure 16. Capacity-Guided QoS Benefits

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

SPECjbb SPECjas SAP
Switching interval

C
ac

he
 o

cc
up

an
cy

Cache0 Cache1 Cache2 Cache3

Figure 17. Metering cache usage for chargeback

5.3. Metering for ChargeBack
Today, OS/VMM provides sufficient hooks to monitor
CPU utilization, memory capacity usage and disk
space usage on a per application/user basis. As a result,
a hosted server can charge the customers only based on
these resource usage levels. However it is obvious that
cache space available to an application also affects its
performance significantly and is therefore a precious
resource. Since CacheScouts provides cache resource
usage information, it can be potentially used to charge
back users.

Figure 17 shows the cache occupancy during the
schedule time of one thread of each server benchmark.
On average, SPECjbb occupies roughly 60% of cache
space during its execution, SAP occupies roughly 50%
of cache space and SPECjappserver occupies a little
over 40% of cache space during its execution.
Assuming that all of the applications spend an equal
amount of time on the CPU, the cache resource
chargeback component should exhibit a ratio of 6:5:4
ratio for SPECjbb, SAP and SPECjappserver.

6. Conclusions and Future Work
In this paper, we motivated the need for dynamic
shared cache monitoring techniques in future CMP
platforms. We proposed the CacheScouts architecture
and implementation options. By employing software-
guided monitoring IDs and set sampling, we showed
that we can achieve accurate low-overhead, fine-grain
cache monitoring data along the following vectors: (a)
cache occupancy, (b) cache interference and (c) cache
sharing. We then profiled the execution of two
workload scenarios: (a) multi-programmed workloads
using SPEC CPU2000 and (b) multi-VM workloads
using multiple multi-threaded server benchmarks. We
showed that the CacheScouts monitoring data is very
useful in optimizing the scheduling policies and
improving performance in these workload scenarios.
So we believe the contributions in this paper will be
valuable to architects as well as OS/VMM developers
in the future. In the future, we plan to perform detailed
evaluation of the use of CacheScouts monitoring for
more workload scenarios and develop QoS-aware OS
and VMM prototypes that can highlight its value. We
expect similar monitoring evaluation that includes
other shared resources will be valuable in the future.

7. References
[1] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting

inter-thread cache contention on a chip multiprocessor
architecture”, 11th HPCA, 2005

[2] T. Deshane, D. Dimatos, et al., “Performance Isolation
of a Misbehaving VMs with Xen, VMware and Solaris
Containers,”http://people.clarkson.edu/~jnm/publication
s/isolationOfMisbehavingVMs.pdf

[3] A. Fedorova, M. Seltzer, M. Smith, C. Small, “CASC:
A Cache-Aware Scheduling Algorithm For
Multithreaded Chip Multiprocessors,”
http://research.sun.com/scalable/pubs/CASC.pdf

[4] L. Hsu, S. Reinhardt, et al., “Communist, Utilitarian,
and Capitalist Cache Policies on CMPs: Caches as a
Shared Resource“, PACT, Sept 2006.

[5] H. Kannan, F. Guo, L. Zhao, et al., “From Chaos to
QoS: Case Studies in CMP Resource Management,”
dasCMP/Micro, Dec 2006.

[6] R. Kessler, M.D. Hill, D. A. Wood, “A comparison of
trace-sampling techniques for multi-megabyte caches”,
IEEE Transactions on Computers, 1994

[7] S. Kim, D. Chandra, and Y. Solihin, “Fair Cache
Sharing and Partitioning in a Chip Multiprocessor
Architecture”, 13th Int’l Conf. on Parallel Architectures
& Complication Technique (PACT), 2004

[8] Intel Corporation. “Intel Dual-Core Processors,”
http://www.intel.com/technology/computing/dual-core/

[9] Intel Corporation, “World’s first quad-core processors
for desktop and mainstream processors,”
http://www.intel.com/quad-core/

[10] Intel Corporation, “Tera-Scale Computing,”
http://www.intel.com/research/platform/terascale/

[11] Intel Corporation, “Intel Vtune Performance Analyzer”,
http://www.intel.com/software/products/vtune

[12] R. Iyer, “CQoS: A Framework for Enabling QoS in
Shared Caches of CMP Platforms,” 18th Annual
International Conference on Supercomputing (ICS’04),
July 2004.

[13] R. Iyer, “On Modeling and Analyzing Cache
Hierarchies using CASPER,” 11th MASCOTS, Oct.
2003.

[14] P. Kongetira, K. Aingaran, K. Olukotun, “Niagara: A
32-Way Multithreaded Sparc Processor,” IEEE Micro.
2005

[15] K. Krewell, “Best Servers of 2004: Where Multicore is
Norm,” www.mpronline.com, Jan 2005.

[16] C. Liu, A. Sivasubramaniam, M. Kandemir,
“Organizing the Last Line of Defense before Hitting the
Memory Wall for CMPs,” 10th IEEE Symp.on High-
Performance Computer Architecture, Feb. 2004.

[17] Oprofile, http://oprofile.sourceforge.net/docs/
[18] S.S.Pinter, M.Zalmanovici, “Data Sharing Conscious

Scheduling for Multi-threaded Applications on SMP
Machines,” Euro-Par 2006

[19] M. K. Qureshi and Yale N. Patt, “Utility-Based Cache
Partitioning: A Low-Overhead, High-Performance,
Runtime Mechanism to Partition Shared Caches”,
MICRO 2006

[20] N. Rafique, W. Lim, M. Thottethodi, “Architecture
Support for OS-Driven CMP Cache Management”, 15th
International Conference on Parallel Architectures and
Compilation Techniques, Sept 2006.

[21] Sap America Inc., “SAP Standard Benchmarks,”
http://www.sap.com/solutions/benchmark/index.epx

[22] SPECjAppServer Java Application Server Benchmark,
available online at http://www.spec.org/jAppServer/

[23] SPECint, http://www.spec.org/cpu2000/SPECint
[24] SPECjbb2005, http://www.spec.org/jbb2005
[25] G. Suh, S. Devadas, and L. Rudolph, “A New Memory

Monitoring Scheme for Memory-Aware Scheduling and
Partitioning,” HPCA-8, Feb 2002.

[26] N. Thornock, “Using Set Sampling for L3 cache
studies,” Master’s Thesis, Dept. of Computer Science,
Brigham Young University, 1999

[27] J. Torrellas, A. Tucker and A. Gupta, “Benefits of
cache-affinity scheduling in shared-memory
multiprocessors”, SIGMETRICS 1993

[28] Hsian-Fen Tsao, “IBM @eserver p5 570 Server
Consolidation Using POWER5”, Virtualization White
Paper, IBM Corporation

[29] R. Uhlig, et al., “Intel Virtualization Technology,” IEEE
Computer, 2005.

