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Abstract 
As multi-core architectures flourish in the 
marketplace, multi-application workload scenarios 
(such as server consolidation) are growing rapidly. 
When running multiple applications simultaneously on 
a platform, it has been shown that contention for 
shared platform resources such as last-level cache can 
severely degrade performance and quality of service 
(QoS). But today’s platforms do not have the capability 
to monitor shared cache usage accurately and 
disambiguate its effects on the performance behavior 
of each individual application. In this paper, we 
investigate low-overhead mechanisms for fine-grain 
monitoring of the use of shared cache  resources along 
three vectors: (a) occupancy – how much space is 
being used and by whom, (b) interference – how much 
contention is present and who is being affected and (c) 
sharing – how are threads cooperating. We propose 
the CacheScouts monitoring architecture consisting of 
novel tagging (software-guided monitoring IDs), and 
sampling mechanisms (set sampling) to achieve shared 
cache monitoring on per application basis at low 
overhead (<0.1%) and with very little loss of accuracy 
(<5%). We also present case studies to show how 
CacheScouts can be used by operating systems (OS) 
and virtual machine monitors (VMMs) for (a) 
characterizing execution profiles, (b) optimizing 
scheduling for performance management, (c) providing 
QoS  and (d) metering for chargeback. 
 
1. Introduction 
With dual-core and quad-core processors [8][9] already 
in the marketplace for client and server platforms, we 
have truly entered the era of chip-multiprocessor 
(CMP) platforms. All major CPU manufacturers have 
adopted the CMP architecture and have announced 
plans to aggressively increase the number of cores 
integrated on a single chip [10] [14][15]. There are two 
ways of taking advantage of the high degree of thread 
parallelism enabled by CMP – (a) parallelize 
applications to be highly multi-threaded and (b) run 
multiple applications simultaneously. In this paper, we 
focus more on the latter approach and investigate 
multi-application workload scenarios on CMP 

platforms.  The rapid adoption of virtualization [29] as 
a means to consolidate multiple applications on to a 
single server platform is a prime example of this 
approach. In addition, the usage of client platforms 
(desktops and laptops) is also becoming richer with 
multiple applications running simultaneously. 

When running multiple applications simultaneously 
on client and server platforms, the key performance 
challenge is that of platform resource contention. As 
more cores are enabled, contention for compute 
resources reduces. However, the contention shifts to 
the rest of the platform because the compute cores 
continue to share critical platform resources such as 
cache, memory and I/O. Several recent studies [1] 
[4][5][7][16][18][19] have shown that contention for 
shared last-level cache can cause significant loss in 
performance, determinism and quality of service 
(QoS). However, today’s CMP platforms have no 
support to monitor the shared cache resource and to 
provide an understanding of resource usage breakdown 
amongst the multiple applications running 
simultaneously. The knowledge of resource usage is 
the key to disambiguating the impact of sharing on 
each individual application’s performance, to allow 
OS/VMM make optimal scheduling decisions and for 
metering and chargeback. 

In this paper, our goal is to propose low-overhead 
fine-grain shared cache monitoring techniques for 
CMP platforms. We start by describing the four key 
usage models namely profiling/characterization, 
scheduling and performance management, QoS and 
metering/chargeback, and show that their monitoring 
requirements essentially include (a) occupancy – how 
much space is being used and by whom, (b) 
interference – how much contention is present and who 
is being affected and (c) sharing – how are 
applications/threads cooperating. We then compare and 
contrast several alternatives for this shared cache 
monitoring in terms of overheads, granularity and 
accuracy.  We propose the CacheScouts monitoring 
architecture consisting of novel tagging (with software- 
guided IDs) and sampling mechanisms (with set 
sampling) to achieve per application monitoring at low 
overhead and with very little loss of accuracy. We
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         (a) Typical CMP architecture    (b) Example of cache/memory contention 

Figure 1.  CMP architecture and cache/memory contention 
 

evaluate CacheScouts in two important workload 
contexts (virtualized CMP servers running three server 
benchmarks and multi-application CMP client 
platforms running multiple SPEC CPU2000 
applications) and show its efficacy in determining 
execution profiles. Finally, we perform case studies to 
show how CacheScouts monitoring data will be used 
dynamically for (a) optimized scheduling / 
performance management, (b) quality of service 
guarantees and (c) metering resource usage for 
chargeback. We believe that this paper is the first to 
propose shared cache monitoring mechanisms for CMP 
architectures, evaluate them for client/server workload 
environments and show their use along three very 
different vectors.  

The rest of this paper is organized as follows.  
Section 2 presents important usage models that 
necessitate monitoring feedback and describes related 
work in this area. Section 3 compares/contrasts several 
approaches to implement shared cache monitoring and 
introduces the CacheScouts architecture. Section 4 
evaluates the CacheScouts monitoring options for two 
multi-application workload scenarios. Section 5 covers 
detailed case studies that show how these monitoring 
hooks can be employed by operating systems and 
virtual machine monitors for better scheduling and 
performance management, better quality of service and 
more accurate metering and chargeback. Section 6 
concludes the paper and covers future work in this 
area. 

 
2. Motivation and Background 
In this paper, we assume a typical CMP architecture as 
illustrated in Figure 1(a). As shown in the figure, there 
are N cores in each die with private L1 caches and a 
shared L2. Our assumptions on workload scenarios are 
basically multiple heterogeneous applications running 
simultaneously on client platforms or multiple virtual 
machines running simultaneously on server platforms. 

When multiple applications or virtual machines 
(VMs) run simultaneously on such CMP architectures, 
contention for shared cache space and memory 
bandwidth is bound to occur. To understand the 
performance effect of this contention, we performed a 
simple experiment. We ran SPECCPU2000 
applications on the Core 2 Duo desktop (2 cores 
sharing 4MB of last-level cache) in two modes: (a) 
dedicated mode where we run one application on one 
core in the platform and (b) pair-wise mode where we 
run the application on one of the cores and run another 
application on the other core. Figure 1(b) shows the 
slowdown in terms of the ratio of execution time in 
pair-wise mode over that in dedicated mode. As one 
can observe, the slowdown can be as high as ~4.76X 
(when mcf is running with swim). Overall, we observe 
that in 30% of the pairs, the slowdown ranges from 
1.2X to 5X. We have performed similar studies with 
virtualized server workloads running simultaneously 
and observed similar slowdown effects.  

Since shared cache contention is clearly high, 
shared cache monitoring is highly desirable. In 
particular, the following key usage models motivate 
the need for shared cache monitoring in both client and 
server platforms configurations: 

[1] Performance Profiling and Characterization: 
When an application runs alone on a platform, the 
resources in that platform are dedicated to its execution 
and it is possible to characterize and model resultant 
application performance. Software developers tend to 
assume this is the case and optimize for best 
performance. However, when multiple applications or 
VMs run simultaneously (two applications running on 
Core 2 Duo in Fig. 1b for example), it is difficult to 
determine the resources like cache space that ends up 
being given to each individual application. The 
situation gets worse as the number of applications 
running increases and is more than the number of 
cores. Performance monitoring counters that are 
available in today’s platform only provide cache 
misses  on a per core basis. In order to better 
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Figure 2.  Usage models for CMP shared cache monitoring 
 

characterize the effect of cache contention on each 
application’s individual performance, the minimum 
amount of information needed is the cache occupancy 
(i.e. number of cache lines consumed) and misses on a 
per application basis during the execution time. This 
data can be then incorporated into profiling tools like 
Vtune [11] or Oprofile [17] for use in dynamic 
optimization by developer or administrator. 

[2] OS/VMM Scheduling/Performance 
Management: The job of OS or VMM is to schedule 
applications or VMs respectively on the cores for 
maximum performance efficiency. Ideally, there are 
three aspects that the scheduling policy should take 
into account in a CMP platform with multiple shared 
caches: (a) it is better to schedule applications that 
contend less with each other on the same cache, (b) it 
is better to schedule applications or threads that share 
data on the same cache and (c) it is better to affinitize 
applications to caches if their working set is still 
available on the cache from the previous scheduling 
interval. However, the OS/VMM has almost no 
visibility into cache contention or sharing statistics in 
today’s CMP platform. As a result, OS/VMM 
scheduling policies do not have the ability to determine 
which applications should be co-scheduled on the cores 
sharing the same cache. Researchers [27][3][25][18] 
have attempted to optimize scheduling by using crude 
indicators for affinity (such as time elapsed between 
scheduling intervals) and cache destructiveness (such 
as high miss rate) for example. However, all of the 
literature points out that this is not ideal and the crude 
mechanisms were used primarily due to the lack of 
shared cache monitoring feedback from the hardware.  

[3] Quality of Service and Performance 
Isolation: In a client environment, there are several 
foreground and background applications running 
simultaneously. Typically, the foreground applications 
are given higher priority in terms of core scheduling. 
However, since there are multiple cores available in 
CMP architectures, both foreground and background 
application will run simultaneously. Since the 

background application could steal cache/memory 
resources and affect the foreground application, it is 
important to implement QoS mechanisms in the cache 
that provide preferential treatment and a reasonable 
degree of performance isolation. Similar QoS and 
performance isolation concerns [2][5][12][20][28] are 
already becoming apparent in datacenter server 
environments where VMs of differing priorities based 
on service level agreements are running 
simultaneously. In order to guide cache space 
allocation based on priorities provided by the software 
layer (OS or VMM) [5][12][20], it is important for the 
OS/VMM to know how much of the resource (cache 
space in this case) is being used by each application. 
As a result, shared cache monitoring is very critical to 
QoS and performance isolation. 

[4] Metering for Chargeback: A common model 
for hosted server environments is that of running 
multiple customer applications (potentially in multiple 
virtual machines) simultaneously on the same platform 
and determining how the platform resources were used 
by each application. The resource utilization is used to 
determine how the customer will be charged for the 
hosting service. Today, the only resources considered 
for chargeback are number of cores, memory capacity 
and disk space. Since shared cache contention can 
affect performance significantly, it is important to take 
shared cache space into account when determining the 
chargeback. This again points to the need for shared 
cache monitoring and the need for determining how 
cache space usage plays a role in the overall 
chargeback model. 

 
3. CacheScouts: Shared Cache Monitoring 

In previous section, we described four usage models 
for shared cache monitoring techniques. While the 
usage models are quite different, the underlying 
monitoring requirements are fairly similar in nature. In 
this section, we start by describing the underlying 
monitoring requirements, CacheScouts goals and 



considerations. We then delve into the overall 
CacheScouts architecture and compare/contrast 
implementation options. 

3.1. Goals & Requirements 
The goal of the CacheScouts architecture is to provide 
sufficient monitoring data as feedback to guide the 
questions listed in Figure 2. Based on the usage 
models, we believe that the following monitoring 
requirements should be the primary basis for 
CacheScouts: 

[1] Cache Occupancy per Application: One of 
the fundamental requirements for most usage models is 
the ability to accurately estimate the amount of cache 
space consumed by each application during its runtime. 
This requires that the number of cache lines be counted 
on a per application basis and be exposed to the 
OS/VMM so that it can monitor the data at regular 
intervals. 

[2] Cache Interference per Application: 
Another important monitoring requirement is that of 
capturing the amount of cache interference experienced 
between applications that are co-scheduled on the same 
shared cache. For example, consider one application 
A1 co-scheduled with three other applications A2, A3 
and A4. We need to keep track of the number of times 
that A1’s cache lines are evicted by A2, A3 or A4. In 
addition, it will also be useful to keep track of how 
often A1 evicted A2, A3 or A4’s cache lines. 
Ultimately a NxN (4x4 in this example) matrix of 
eviction would provide more detail on how the 
evictions are distributed.  

[3] Cache Sharing per Application: If multiple 
applications running simultaneously are sharing data in 
memory, then it is important to keep track of how often 
a cache miss from one application finds the cache line 
already brought in another cache by either the same 
application or another application.  This allows the OS 
to identify applications that should be co-scheduled as 
well as identify applications that migrate from one 
cache to another and suffer cold cache misses 
repeatedly. 
 
3.2. CacheScouts Architecture  
In order to satisfy the monitoring requirements listed in 
the previous section, we propose the CacheScouts 
shared cache monitoring architecture as illustrated in 
Figure 3. We describe the architecture first without 
constraints and then later impose the practical 
constraints to determine feasible implementation 
options. The architecture can be decomposed into two 
major components: 

[1] Cache Line Tagging: In order to associate 
cache lines with the application that is using the data, it 

is required that we tag the cache lines with a 
monitoring identity (MID) either when they are 
allocated or when they are touched. This requires that 
the cache/memory request generated by the core should 
be tagged with the MID before it is sent to the shared 
last-level cache. The overhead of tagging the request is 
fairly low. However, the overhead of tagging each 
cache line with its respective MID is the major 
challenge that needs to be addressed for low-overhead 
implementation. For example, for caches with 64 byte 
cache lines, the overhead of a 10-bit MID (covering 
1024 possible identities) incurs an overhead of ~2%. 
While this may seem already low, considering that the 
vast majority of a processor die (typically 40 to 60%) 
is the last-level cache, more than 1% of the die will be 
used up by these monitoring IDs. The basic challenge 
is to keep the number of MIDs low, but allow the 
coverage of many more applications to be tracked by 
the software layer. Another basic challenge is to avoid 
having to tag every cache line with the MID. Below, 
we will discuss hardware-based and/or software-guided 
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MID options and its implications on implementation 
options.  

[2] Shared Cache Performance Arrays: In order 
to keep track of the occupancy, interference and 
sharing on a per application basis, we need a new set of 
shared cache performance arrays that need to be 
updated when cache events of interest occur. Figure 
3(a) describes the flow of information from the cache 
to the shared cache performance arrays and Figure 3(b) 
shows the detailed organization of the arrays 
themselves. For each application (identified by MID), 
we maintain the following four summary information:  
• Occupancy: The number of cache lines currently 

tagged by this application id. In order to 
accomplish this, we need to increment the 
occupancy counter when a new line is allocated 
(upon a miss event) into the cache and decrement 
the counter when a line is evicted (upon 
victimization) from the cache. 

• Interference: There are two forms of interference: 
(i) how often an application gets evicted from the 
cache by another application versus (ii) how often 
it evicts a cache line of another application. The 
summary performance array keeps track of both as 
shown in Figure 3(b). This is accomplished by 
incrementing these counters when the miss MID 
and the eviction MIDs are different. In order to get 
a more accurate picture of which applications were 
causing the most interference, a more detailed 
NxN matrix can also be maintained shown by the 
second table in Figure 3(b). This table keeps track 
of evictions caused by application X (row) on 
application Y (column). 

• Sharing: In order to determine cross-cache 
sharing, we also keep track of the number of cache 
misses that end up hitting in another cache. As a 
result, the sharing count needs to be incremented 
every time an external snoop (for a miss) returns a 
valid snoop result with a corresponding MID from 
the other shared cache in the platform. In order to 
determine exactly which applications were 
sharing, a more detailed NxN matrix is also 
maintained as illustrated by the second table in 
Figure 3(b). 

The area overhead of the shared cache performance 
arrays can be quite significant. Maintaining the 
summary table for 1024 applications (or MIDs) for 
instance requires about 16KB (~0.4% of a 4MB 
cache). However, maintaining a 1024x1024 table for 
the same number of applications begins to be 
alarmingly area-intensive. As a result, it is important to 
reduce the number of MIDs to a more manageable 
quantity, but retain the accuracy and usability of these 
shared cache performance counters. In the next few 

sections, we discuss the implementation options that 
attempt to reduce the area overhead significantly. 
 

3.3. CacheScouts Implementation Options 
In this section, we discuss practical implementation 
options for the CacheScouts architecture. The main 
motivation is to find an option that reduces the area 
overhead significantly, but retains a usable level of 
granularity and accuracy of the performance 
monitoring.  
 

3.3.1. Monitoring with Core MIDs 

The simplest approach to maintaining occupancy is to 
maintain it per core. Note that we use the term “core” 
here to indicate a hardware thread. As a result, the 
MID would essentially be the core id and therefore be 
supporting very small number of IDs. 

However, there are some serious limitations to this 
approach. If the number of applications is more than 
the number of cores, then it becomes very difficult to 
identify whether a cache line was related to the 
previous application context running on this core or the 
current one. Since cache state is persistent across 
multiple context switches, it is almost impossible to 
determine which application is currently occupying the 
cache. While additional counters could be maintained 
to address this specific problem, there are no elegant 
heuristics to solve the overall problem of overlaying 
multiple applications on to the cores without any 
software guidance. As a result, we rule out this 
hardware-only approach to monitoring shared cache 
usage. 
 

3.3.2. Monitoring with Software MIDs 

We believe that the most practical and usable solution 
for monitoring cache space is based on software-
guided MIDs. This essentially allows the OS or VMM 
to associate an MID with each application or virtual 
machine when it is scheduled on to the core. The 
software-guided MID can be specified in a control 
register within the core so that it is saved and restored 
across context switches. Since there are still a limited 
number of MIDs (say 32 or 64), the OS or VMM can 
appropriately recycle the MIDs amongst its running 
applications and essentially enable sampling of a 
subset of applications over any given period of time.  

For the rest of the paper, we assume that 64 
software-guided MIDs are reasonable to employ for 
most commercial client and server environments. With 
64 MIDs, the overhead of tagging each line in the 
cache is moderately high (~1.25%). It is important to 
look for novel mechanisms that further reduce this area 
overhead in the cache. 
 



3.3.3. Using Set Sampling Mechanisms 

In order to reduce the overhead of shared cache 
monitoring and avoid tagging every single line in the 
cache with a MID, we propose the use of set sampling 
in the cache. Set Sampling [6][26] has been shown to 
be very effective in accurately representing the 
behavior of the entire cache. Researchers have shown 
that much less than 10% of the sets need to be sampled 
to achieve significant accuracy in estimating cache 
behavior. Here, we take advantage of set sampling to 
reduce the overhead of maintaining MIDs. We choose 
a random subset of sets in the cache and tag all of the 
lines within these sampled sets with the MIDs. While 
we independently evaluate (in Section 4) the number of 
sets required for sufficient monitoring accuracy, we 
expect that much less 10% of the sets will be required. 
As a result, we can reduce the area overhead of MID-
enabled caches down to at least 0.125% (instead of 
1.25% for the full cache). It should be noted that the 
MIDs for the sampled sets will now be stored in a 
separate structure because extending only a few of 
cache line tags makes the cache layout irregular and 
complex. At the same time, having a separate structure 
is more flexible and modular as its design can be done 
independent of the main cache design. 
 

 
 

Figure 4. CacheScouts architecture using 
software MIDs and set sampling 

 

Overall, the combination of software-guided MIDs 
and set sampling seems like a promising approach to 
implement the CacheScouts architecture. Figure 4 
summarizes the changes to the CacheScouts 
architecture to implement software-guided MIDs and 
set sampling.  
 

4. Evaluating CacheScouts Options 
In this section, we perform a detailed study of the 
execution profile and cache performance behavior of 
two important workload scenarios based on the 
CacheScouts monitoring data. 

 

4.1. Workloads and Simulations 
To understand the behavior of simultaneous 
applications and virtual machines running together, we 
chose two configurations:  
(1) Multi-programmed Configuration with 8 single-
threaded SPEC CPU2000 applications [23] running on 
a 4-core architecture  as shown in Figure 5. The 4-core 
architecture resembles Intel’s Core 2 Duo-based quad-
core desktop platform. From the SPEC CPU2000 suite, 
we chose the following eight benchmarks: swim, mesa, 
mcf, gzip, eon, bzip2, art and apsi. This mix was 
chosen to have some workloads that occupy lots of 
cache, some that are memory-intensive and some that 
need very little cache. 
 (2) Virtualized Server Configuration with 3 multi-
threaded server benchmarks consolidated on an 8-core 
architecture as shown in Figure 5. The 8-core 
architecture resembles Intel’s latest server platform 
with two Core 2 Duo-based quad-core processors. We 
chose the following 3 server benchmarks to run 
simultaneously. 
 SAP SD/2T: SAP SD 2-tier [21] is a sales and 

distribution benchmark to represent enterprise 
resource planning (ERP) transactions.  

 SPECjbb2005: SPECjbb2005 [24] models a 
warehouse company with warehouses that serve a 
number of districts.  

 SPECjappserver2004: SPECjappserver 2004 
[22] is a multi-tier server benchmark that 
represents J2EE application servers. 
SPECjappserver models the information flow 
between an automotive dealership, manufacturing, 
supply chain and order/inventory. 

Since our primary interest is in cache performance, 
occupancy, interference and sharing, we employed a 
cache hierarchy simulator called CASPER [13]. 
CASPER was modified to maintain the monitoring 
information (shared cache performance arrays) on a 
MID basis. To simulate the scheduling of many 
application threads on fewer cores, we simulated a 
global scheduling queue of workload traces for each of 
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the above benchmarks. The traces were allowed to run 
on available cores for a typical scheduling duration, 
which is estimated based on the references and 
instructions in the traces. We ensured that the traces 
were long enough to capture the behavior of the 
applications and to warm up the cache for the 
associated statistics. 
 
 
 
 
 
 
 
 

 
Figure 5. Simulation configurations  

 
4.2. Capacity Profile using CacheScouts 
We start by looking at the cache capacity profile for 
both workload scenarios. Figures 6 and 7 show the 
capacity data (fraction of the cache size) sampled at 
regular frequent intervals (the x-axis). Figure 6 shows 
the data for both caches on the 4-core architecture. It 
can be observed that the distribution of cache resource 
usage between the SPEC applications is quite 
disparate. For example, mcf and art occupy large 
portions of the first cache during the execution. On the 
second cache, swim and mcf occupy significant 
portions of the cache, with art occupying significant 
space only in a few samples. Comparing the two 
charts, we can also observe how applications (like art 
and mcf) move from one cache to another and affect 
cache behavior. 

Figure 7 shows the same data for server workloads 
on the 8-core architecture but only for one of the four 
caches for brevity. The legend indicates the benchmark 
name (multiple times for each of the four threads) 
within the benchmark. The distribution of cache space 
is less skewed in the multi-VM server configuration 
since all the three server workloads are cache-sensitive 
and use a lot of the cache space. At the same time, in 
any given sample (a bar) the amount of cache can be 
observed to be quite un-even cross the two benchmarks 
simultaneously running on that cache.  

Another way to look at the cache capacity is at the 
scheduling points of the application (i.e. when it is 
ready to be scheduled on the core). For example, let us 
revisit the cache migration behavior of art in Figure 6. 
From a visual comparison of the two charts, it is clear 
that art migrates from cache 1 to cache 2 at the 35th 
time sample. Since art has a large working set, it is 
preferable to affinitize it to cache 1 instead of 
migrating it to cache 2. In order to do so, it is important 

to dynamically detect the working set size and allow 
the scheduler to determine which application should be 
affinitized and which should be migrated. Today, the 
OS/VMM attempt to determine migration/affinitization 
actions based on the time elapsed between schedule 
points. CacheScouts provides direct cache capacity 
monitoring to the scheduler for this purpose. 
 

4.3. CacheScouts Interference Profile  
Figure 8 and 9 show the cache interference data for 
both workload scenarios. The data is shown on a per 
application basis and for each scheduling duration 
during which the application was running on the core 
since no interference can occur when the application is 
waiting to be scheduled. The bar illustrates the number 
of misses that occurred for that application during the 
scheduling duration. The bar is broken down into the 
following conditions that can occur on a miss: (a) 
“Find invalid line” -- an invalid line is found and the 
line is allocated without conflicting other application, 
(b) “Conflict Self” -- a victim is found and the victim 
belongs to the same application and (c) “Conflict 
Other” -- a victim is found and the victim belongs to a 
different application. Figure 8 illustrates that three of 
the five applications (art, mcf and swim) have a high 
miss count. It can be further observed that swim 
replaces others more often than itself, whereas mcf 
replaces itself more than others. Figure 9 shows the 
server data for 1 thread out of each benchmark. Among 
the three benchmarks, SPECjbb has the highest miss 
rate. However, even with a smaller miss rate, SAP is 
almost as destructive as SPECjbb because it interferes 
with others more than with itself.  The measure of 
destruction along with the capacity can be used to do 
appropriate co-scheduling and migration by the 
operating system. In section 5, we will show that this 
interference and the previous capacity information can 
be used effectively to re-schedule applications 
dynamically and improve overall performance. 
 
4.4. CacheScouts Sharing Profile  
Figure 10 shows the cache sharing profile for the 
server workloads since we already know that SPEC 
applications do not share any data with each other.  We 
can see that SPECjappserver has the maximum amount 
of sharing and therefore the threads belonging to 
SPECjappserver should be co-scheduled together. 
SPECjbb and SAP have small amounts of sharing and 
it is not clear whether co-scheduling is necessary for 
these workloads. In Section 5, we will show that using 
CacheScouts feedback, we can optimize VMM 
scheduling algorithms to take advantage of sharing by 
co-scheduling relevant threads.  

8 single-threaded 
SPEC workloads 

3 multi-threaded server benchmarks 
(each with 4 threads) 

4MB 4MB 4MB 4MB 4MB 4MB
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Figure 6. CacheScouts capacity profile for multi-programmed workloads (for both the caches) 
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Figure 7. CacheScouts capacity profile for multi-VM server workloads (1 of 4 caches) 

 

0

5000

10000

15000

20000

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

eon gzip art mcf swim
Switch interval

M
is

se
s 

pe
r 

m
ill

io
n 

in
st

ru
ct

io
ns

Conflict other
Conflict self

109954
103563

113713

 
Figure 8. CacheScouts interference data for 

multi-programmed workloads (SPEC) 
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Figure 9. CacheScouts interference data for 

multi-VM workloads (Server) 
4.5. CacheScouts Set Sampling Accuracy 
When employing set sampling to reduce the overhead 
of monitoring, it is important to determine how many 
sets need to be sampled for reasonable accuracy. 
Figure 11 and 12 show the set sampling accuracy in 
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Figure 10. CacheScouts sharing data for multi-VM 
 

reporting cache capacity information for the SPEC 
benchmarks and the server workloads respectively 
during their scheduling intervals. The data is reported 
in terms of average error rate (the % difference 
between full cache and set sampling with varying 
number of sets). As can be observed from the figure, 
the error rate in most cases reduces significantly as the 
number of sampled sets increases from 32 to 128 sets. 
It should be noted that a 4M cache with 64 byte lines 
and 16-way sets consists of 4096 sets. Employing 128 
sampled sets out of 4096 is only 3.125%, which is 
much lower than the 10% that was conservatively used 
during the implementation discussion. For SPEC 
workloads, the average error rate is 6% or less when 
employing 128 sampled sets. It should also be noted 
that the error appears to be higher for workloads like 
eon because the fraction of cache capacity for these 
workloads is already very negligible. For server 
workloads (Figure 12), employing 128 sets provides an 
error rate that is 4% or lower. Since most of this data is 



being used only for performance optimizations, even 
90% accuracy (or less than 10% error) is expected to 
be more than sufficient. 
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Figure 11. CacheScouts set sampling 

accuracy for SPEC workloads 
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Figure 12. CacheScouts set sampling 

accuracy for server workloads 
 

5. CacheScouts Monitoring Use Cases 
We now look at some detailed monitoring case studies 
to show the value of CacheScouts monitoring feedback 
provided to the OS/VMM. 
 

5.1. Simple Scheduling Optimizations 
We start by first attempting two simple scheduling 

optimizations that require the use of CacheScouts. The 
first one is that of detecting sharing between threads 
and employing this knowledge to co-schedule sharing 
threads on the same cache. A CacheScouts-aware 
scheduler looks ahead in the queue and attempts to find 
a waiting task that has significant sharing with the 
other threads already running on other cores that share 
the same cache. The CacheScouts sharing matrix 
provides accurate information on sharing between 
applications and therefore this is used by the scheduler 
to perform this optimization. We experimented with 
this approach by implementing a CacheScouts-aware 
scheduler. 

Figure 13 shows the resultant benefits as a function 
of the lookahead length. Note that a lookahead length 
of 0 is the base case with no optimizations. Using a 
lookahead length of 3 improves the miss rate of 
SPECjappserver by 20%, SAP by 18% and SPECjbb 
by a negligible amount. It should also be noted that the 

remote misses (misses that earlier found the data in a 
remote cache) are the ones that reduce significantly. 
The other misses stay roughly constant or increase 
moderately. 
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Figure 13. Benefits of sharing optimization for 

server workloads 
 

We experimented with a capacity-based 
optimization for the SPEC workloads since we found 
that they use the cache resource very disparately. Here, 
the basic optimization is that of affinitizing threads to 
caches where the working sets are still remnant even 
after a few context switches. Typically, schedulers 
attempt to perform affinitization based on time elapsed 
between the previous context switch and the current re-
schedule. However, CacheScouts provides accurate 
information on the working set of an application in the 
cache even after it is de-scheduled from the core. As a 
result, every time a scheduler attempts to find a task in 
the queue to schedule on to a core, it can look ahead 
deeper into the queue to find a task that still has the its 
working set left in the cache. By doing so, the task will 
not suffer a cold-cache effect and thereby improve in 
performance. Figure 14 shows the benefits of 
CacheScouts-based affinitization. From the chart, it 
can be seen that the application with the largest miss 
rate (art) improves by as much as 90%, which is offset 
by an increase in miss rate for the next dominant 
application (mcf). Overall, the average miss rate across 
all applications reduces by 40%, which is a significant 
improvement over the traditional scheduling algorithm.  

We also performed another experiment by 
implementing CacheScouts in a full-system execution-
driven simulator with timing information. We 
employed the capacity and interference counters 
available in CacheScouts to dynamically group 
applications by sorting them in capacity/interference 
order and co-scheduling one application from each end 
of the sorted list. This helps because each cache ends 
up with an application with a large working set (a very 
destructive application) as well as a small working set 
(a non-destructive application). We chose to run only 
four SPEC applications (art, swim, crafty and eon) 
simultaneously on the 4-core, 2-cache architecture 



described earlier. Figure 15 shows the resultant 
benefits of performing this optimization. We observe 
performance benefits ranging from 7% to 26%. Thus 
the overall throughput of the platform is improved 
significantly by dynamic co-scheduling optimizations 
based on CacheScouts capacity/interference. 
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Figure 14. Benefits of capacity optimizations 

for SPEC workloads 
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Figure 15. Capacity/Interference-Aware 

scheduling 
 

5.2. Employing CacheScouts for QoS  
In this subsection, we will investigate the use of 
CacheScouts to guide QoS and performance isolation 
mechanisms. QoS mechanisms have been proposed in 
previous literature [5][12] to control the distribution of 
cache resources to applications and virtual machines 
with varying user importance or priorities. The first 
step to enforcement is the knowledge of the resource 
utilization on a per application basis. CacheScouts 
enables this knowledge and allows the OS/VMM to 
provide cache allocation threshold hints to the 
platform. We set up a simple QoS experiment where 
we prioritize art over all other SPEC applications in 
the multi-programmed workload scenario. This is done 
by setting the priority of all applications except art to 
low priority and associating the low priority to limit its 
consumption to a 40% capacity threshold. This ensures 
that at least 60% of the cache is available to art at all 
times. The replacement policy in the cache is 
implemented by comparing the CacheScouts capacity 
counters to the threshold value of 40%. Figure 16 
shows the benefit of employing CacheScouts for QoS. 

We can see that the cache miss rate of art reduces by 
almost 40% at the potential expense of other 
application performance. For example, mcf miss rate 
increases by as much about 30% because it is 
constrained in cache space whenever it runs with art. 
Note that setting the limit to 40% for all other 
applications except art has the potential to affect their 
performance only when they are co-scheduled with art. 
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Figure 16. Capacity-Guided QoS Benefits 
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Figure 17. Metering cache usage for chargeback 
 

5.3. Metering for ChargeBack 
Today, OS/VMM provides sufficient hooks to monitor 
CPU utilization, memory capacity usage and disk 
space usage on a per application/user basis. As a result, 
a hosted server can charge the customers only based on 
these resource usage levels. However it is obvious that 
cache space available to an application also affects its 
performance significantly and is therefore a precious 
resource. Since CacheScouts provides cache resource 
usage information, it can be potentially used to charge 
back users. 

Figure 17 shows the cache occupancy during the 
schedule time of one thread of each server benchmark. 
On average, SPECjbb occupies roughly 60% of cache 
space during its execution, SAP occupies roughly 50% 
of cache space and SPECjappserver occupies a little 
over 40% of cache space during its execution. 
Assuming that all of the applications spend an equal 
amount of time on the CPU, the cache resource 
chargeback component should exhibit a ratio of 6:5:4 
ratio for SPECjbb, SAP and SPECjappserver.  

 



6. Conclusions and Future Work 
In this paper, we motivated the need for dynamic 
shared cache monitoring techniques in future CMP 
platforms. We proposed the CacheScouts architecture 
and implementation options. By employing software-
guided monitoring IDs and set sampling, we showed 
that we can achieve accurate low-overhead, fine-grain 
cache monitoring data along the following vectors: (a) 
cache occupancy, (b) cache interference and (c) cache 
sharing. We then profiled the execution of two 
workload scenarios: (a) multi-programmed workloads 
using SPEC CPU2000 and (b) multi-VM workloads 
using multiple multi-threaded server benchmarks. We 
showed that the CacheScouts monitoring data is very 
useful in optimizing the scheduling policies and 
improving performance in these workload scenarios. 
So we believe the contributions in this paper will be 
valuable to architects as well as OS/VMM developers 
in the future. In the future, we plan to perform detailed 
evaluation of the use of CacheScouts monitoring for 
more workload scenarios and develop QoS-aware OS 
and VMM prototypes that can highlight its value. We 
expect similar monitoring evaluation that includes 
other shared resources will be valuable in the future.  
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