
Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science

Master’s Thesis

Measurement-based Inference
of the Cache Hierarchy

submitted by

Andreas Abel

submitted

December 28, 2012

Supervisor

Prof. Dr. Jan Reineke

Reviewers

Prof. Dr. Jan Reineke
Prof. Dr. Dr. h.c. Reinhard Wilhelm

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used any other media or
materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die Bibliothek der
Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the public by having
them added to the library of the Computer Science Department.

Saarbrücken,…………………………….. ………………………………………….
 (Datum / Date) (Unterschrift / Signature)

Abstract

Modern microarchitectures employ memory hierarchies involving one or more
levels of cache memory to hide the large latency gap between the processor
and main memory. Detailed models of such memory hierarchies are required
in a number of areas, including static worst-case execution time analysis,
cycle-accurate simulation, self-optimizing software, and platform-aware com-
pilation.

Unfortunately, sufficiently precise documentation of the logical organization
of the memory hierarchy is seldom available publicly. Thus, engineers are
forced to obtain a better understanding of the microarchitecture by other
means. This often includes performing measurements on microbenchmarks
in order to iteratively refine a conjectured model of the architecture; a process
that is both costly and error-prone.

In this thesis, we investigate ways to automate this process. We propose
algorithms to automatically infer the cache size, the associativity, the block
size, and the replacement policy. We have implemented and applied these
algorithms to various popular microarchitectures, uncovering a previously
undocumented cache replacement policy in the Intel Atom D525.

Acknowledgements

First and foremost, I would like to thank Prof. Jan Reineke for his excel-
lent supervision. Parts of the work presented in this thesis, in particular
the formalization of caches in Chapter 2, and the description of the replace-
ment policy algorithm in Section 4.3, were developed in close collaboration
with him. This collaboration has also lead to two publications: The paper
“Automatic Cache Modeling by Measurements” [AR12] was presented at the
Junior Researcher Workshop on Real-Time Computing (JRWRTC 2012) in
Pont-à-Mousson, France, and the paper “Measurement-based Modeling of
the Cache Replacement Policy” [AR13] will be presented at RTAS 2013 in
Philadelphia, USA.

I would also like to thank the people at the Compiler Design Lab for their
support and helpful advice, in particular Jörg Herter, who helped me find a
topic for my Master’s thesis and put me into contact with Jan Reineke.

Finally, I would like to thank Prof. Reinhard Wilhelm for agreeing to review
this thesis.

Contents

1 Introduction 3
1.1 Outline . 4

2 Caches 5
2.1 Cache Organization . 6
2.2 Formalization and a Cache Template 7

2.2.1 What Can Be Measured? 9
2.2.2 What Can Be Inferred? 10

2.3 Replacement Policies . 10
2.3.1 Permutation Policies 11
2.3.2 Logical Cache Set States 14

2.4 Cache Optimizations . 14

3 Related Work 19
3.1 Measurement of Cache Hierarchy Parameters 19
3.2 Machine Learning . 25

4 Algorithms 27
4.1 Cache Size/Associativity . 28

4.1.1 Simple Algorithms . 28
4.1.2 A More Robust Algorithm 30
4.1.3 An Algorithm Supporting Physically Indexed

Caches . 32
4.2 Block Size . 37
4.3 Replacement Policy . 39

4.3.1 Intuitive Description of Algorithm 39
4.3.2 A Naive Implementation 41
4.3.3 A More Robust Implementation 42

4.4 Second-level Caches . 43

5 Implementation 45
5.1 Measuring Cache Misses . 45

5.1.1 Hardware Performance Counters 45
5.1.2 Measuring the Execution Time 46
5.1.3 Simulation . 46

5.2 Dealing with Measurement Errors 47
5.2.1 Countermeasures . 51

5.3 Implementing Access Sequences 54

1

CONTENTS

5.3.1 Implementing Access Sequences for Data Caches 54
5.3.2 Implementing Access Sequences for Instruction Caches 54

5.4 Implementation of the Android App 56

6 Experimental Evaluation 57
6.1 Evaluation of chi-PC & chi-T on Different CPUs 57

6.1.1 Core 2 Duo & Core 2 Quad Replacement Policies . . . 61
6.1.2 Intel Atom D525 Replacement Policy 63
6.1.3 Discussion . 65
6.1.4 Experimental Setup . 65

6.2 Evaluation of the Android App 66

7 Conclusions 67
7.1 Future Work . 68

2

1
Introduction

In recent years, processor speeds have improved significantly faster than ac-
cess times to main memory. To bridge the resulting performance gap, modern
microarchitectures employ memory hierarchies consisting of one or more lev-
els of cache. These caches are small but fast pieces of memory that store
copies of recently accessed code or data blocks.

A number of areas require detailed models of such cache hierarchies. On
the one hand, such models are an essential part of static worst-case exe-
cution time (WCET) analyzers like aiT [FH04]; they are necessary both
for soundness and precision. Similarly, cycle-accurate simulators, such as
PTLsim [You07], need accurate cache models to produce useful results. On
the other hand, self-optimizing software systems like ATLAS [CWPD01],
PHiPAC [BACD97], or FFTW [FJ05], as well as platform-aware compil-
ers, such as PACE [C+10], require detailed knowledge of cache characteris-
tics. The same is true for the performance modeling technique described by
Snavely et al. [SCW+02].

Unfortunately, documentation at the required level of detail is often hard to
come by. Processor manuals can be ambiguous as they are written in natural
language. Sometimes, a single manual describes a whole family of related
processors and just gives a range of possible values for the parameters of
interest. Moreover, information in vendor documents can be incorrect; Cole-
man and Davidson [CD01] described such a case. Finally, processor manuals
might not provide any information about a particular architectural feature
at all. In particular, vendor documents often do not contain information on
the replacement policies used in different levels of the cache hierarchy.

As a consequence, engineers are forced to obtain a better understanding of
the microarchitecture by other means. On x86 processors, the cpuid instruc-
tion [Int12b] provides information on some cache parameters. However, it

3

CHAPTER 1. INTRODUCTION

does not characterize the replacement policy, and similar instructions are not
available on many other architectures. Another possibility for obtaining more
information would be to contact the manufacturer. However, the manufac-
turer is often not able or willing to provide more information, as he wants to
protect his intellectual property. So, as a last resort, the engineer often has to
perform measurements on microbenchmarks using evaluation boards. This
way, he can iteratively refine his understanding of the architectural features
until he is sufficiently confident in his conjectured model.

However, as this process of inferring a model of the cache hierarchy by mea-
surements is both costly and error-prone, the question arises whether it can
be automated. In this thesis, we investigate this question with respect to re-
placement policies used in first- and second-level instruction and data caches.

We introduce a class of replacement policies, we call them permutation poli-
cies, that includes widely used policies such as least-recently-used (LRU),
first-in first-out (FIFO), and pseudo-LRU (PLRU), in addition to a large
set of so far undocumented policies. We then present an algorithm that can
automatically infer the replacement policy used in a cache, provided that it
is part of this class. Since this algorithm requires knowledge of a number
of other cache parameters, namely the cache size, the associativity and the
block size, we develop and improve algorithms for these parameters as well.

Furthermore, we describe two implementations of our algorithms. The first
implementation uses hardware performance counters to measure the number
of cache misses, while the second one measures the execution time. We call
these implementations chi-PC and chi-T (chi stands for “cache hierarchy
inference”, PC for “performance counters”, and T for “time”).

1.1 Outline

The thesis is structured as follows. In Chapter 2, we provide the neces-
sary background regarding caches and replacement policies. In Chapter 3,
we review and discuss related work. Chapter 4 begins with a concise prob-
lem statement. We then present and analyze different algorithms to solve
our problem; details regarding their implementation are provided in Chapter
5. In Chapter 6, we evaluate our approach on a number of different plat-
forms. Finally, Chapter 7 concludes the thesis and presents some ideas for
future work.

4

2
Caches

While processor speeds have been increasing by about 60% per year, access
times to main memory have improved by less than 10% per year [LGBT05].
Although faster memory techniques are available, their capacities are too
small to use them as main memory. This is due to both their high cost and
technological constraints. Modern systems therefore use memory hierarchies
consisting of one or more levels or cache memory, small but fast pieces of
memory that store a subset of the main memory’s content.

The rationale behind this design is known as the “principle of locality”, which
is comprised of temporal and spatial locality. Temporal locality means that
memory locations that have been accessed recently tend to be accessed again
in the near future. Spatial locality refers to the observation that elements with
addresses that are nearby are likely to be accessed close together in time. In
fact, for a typical program, about 90 percent of its memory accesses are to
only 10 percent of its data. Caches utilize both types of locality by storing
small contiguous memory areas containing recently accessed elements.

Figure 2.1 shows a typical memory hierarchy for a server computer, including
the sizes and speeds of its components.

Figure 2.1: Example of a memory hierarchy. (taken from [HP11b])

5

CHAPTER 2. CACHES

A ∈ Associativity = N The associativity of the cache.
B ∈ BlockSize = N The block size in bytes.
N ∈ NumberOfSets = N The number of cache sets.
S = A ·B ·N The cache size in bytes.
P ∈ Policy The set of replacement policies.

addr ∈ Address ⊆ N Set of memory addresses.
tag ∈ Tag ⊆ N Set of tags.
v, w ∈ Way = {0, . . . , A− 1} Set of cache ways.

i ∈ Index = {0, . . . , N − 1} Set of indices.

Figure 2.2: Parameters and basic domains.

2.1 Cache Organization

In this section, we describe how caches are typically structured internally and
how memory accesses are managed. Here and in the following, we use the
parameters and basic domains depicted in Figure 2.2. Figure 2.3 illustrates
the concepts introduced in the following paragraphs.

To profit from spatial locality and to reduce management overhead, main
memory is logically partitioned into a set of memory blocks of block size B,
which are are cached as a whole. Usually, the block size is a power of two.
This way, the block number is determined by the most significant bits of a
memory address, more generally: blockB(address) = baddress/Bc.

When accessing a memory block, the cache logic has to determine whether
the block is stored in the cache (“cache hit”) or not (“cache miss”). To
enable an efficient look-up, each block can only be stored in a small number
of cache lines. For this purpose, caches are partitioned into N equally-sized
cache sets. The size of a cache set is called the associativity A of the cache.
A cache with associativity A is often called A-way set-associative. It consists
of A ways, each of which consists of one cache line in each cache set. In the
context of a cache set, the term way thus refers to a single cache line. Usually,
also the number of cache sets N is a power of two such that the set number,
also called index, is determined by the least significant bits of the block
number. More generally: indexB,N(address) = blockB(address) mod N.
The remaining bits of an address are known as the tag : tagB,N(address) =
bblockB(address)/Nc. To decide whether and where a block is cached within
a set, tags are stored along with the data.

6

2.2. FORMALIZATION AND A CACHE TEMPLATE

Figure 2.3: Logical organization of a k-way set-associative cache.
(taken from [Rei08])

Since the number of memory blocks that map to a set is usually far greater
than the associativity of the cache, a so-called replacement policy must de-
cide which memory block to replace upon a cache miss. Usually, cache sets
are treated independently of each other, such that accesses to one set do
not influence replacement decisions in other sets. We describe a number of
commonly used replacement policies in detail in Section 2.3.

2.2 Formalization and a Cache Template

In this section, we first define caches and replacement policies formally and
describe a cache template. Based on these definitions, we then discuss by
which means inference algorithms can gain information about the cache.

Definition 1 (Cache). A cache is a 4-tuple C = (CacheStateC , s
0
C , upC , hitC),

where

• CacheStateC is the cache’s set of states

• s0
C ∈ CacheStateC is its initial state

• upC : CacheStateC × Address → CacheStateC models the change in
state upon a memory access

• hitC : CacheStateC × Address → B determines whether a memory
access results in a cache hit or a cache miss.

7

CHAPTER 2. CACHES

Definition 2 (Replacement policy). A replacement policy is a 4-tuple
P = (PolStateP , s

0
P , evictP , upP), where

• PolStateP is the set of states of the policy

• s0
P ∈ PolStateP is its initial state

• evictP : PolStateP → Way determines which memory block to evict
upon a cache miss

• upP : PolStateP × (Way ∪ {miss})→ PolStateP computes the change
in state upon a cache hit to a particular cache way or upon a miss.

Caches as described in Section 2.1 are fully determined by the four param-
eters associativity A, block size B, number of cache sets N, and replacement
policy P introduced above. Specifically, they are instances of the cache tem-
plate T , which maps each parameter combination to a particular cache:

T (A,B,N, P) := (CacheStateT , s
0
T , upT , hitT),

whose components are introduced in a top-down fashion below. CacheStateT
consists of a cache set state (defined in more detail later) for each index:

CacheStateT := Index→ SetState.

The initial state s0
T maps each index to the initial cache set state:

s0
T := λi.s0

set.

The cache update delegates an access to the appropriate cache set; similarly,
whether an access is a hit or a miss is determined by querying the appropriate
cache set:

upT (cs, addr) := cs[index 7→ upset(cs(index), tag)],
hitT (cs, addr) := hitset(cs(index), tag),

where index = indexB,N(addr) and tag = tagB,N(addr). Here, we denote
by f [i 7→ j] the function that maps i to j and agrees with the function f
elsewhere.

States of cache sets consist of the blocks that are being cached, modeled by
a mapping assigning to each way of the cache set the tag of the block being
cached (or ⊥, if the cache line is invalid), and additional state required by
the replacement policy P to decide which block to evict upon a cache miss:

SetState := (Way → (Tag ∪ {⊥}))× PolStateP .

8

2.2. FORMALIZATION AND A CACHE TEMPLATE

Initially, cache sets are empty and the replacement policy is in its initial state,
thus s0

set := 〈λw.⊥, s0
P 〉. An access to a set constitutes a hit, if the requested

tag is contained in the cache: hitset(〈bs, ps〉, tag) := ∃i : bs(i) = tag.

The cache set update needs to handle two cases: cache misses, where the
replacement policy determines which line to evict, and cache hits, where the
accessed way determines how to update the state of the replacement policy:

upset(〈bs, ps〉, tag) :=

{
〈bs[w 7→ tag], upP (ps,miss)〉 : if ∀v : bs(v) 6= tag

〈bs, upP (ps, v)〉 : else if bs(v) = tag

where w = evictP (ps).

Clearly, the above model is not exhaustive, but just fine-grained enough for
our purpose. One of the limitations is that reads are not distinguished from
writes.

2.2.1 What Can Be Measured?

Inference algorithms can neither observe nor directly control the internal
state or operation of the cache. They can, however, use hardware perfor-
mance counters to determine the number of cache misses incurred by a se-
quence of memory operations. (Alternatively, for higher portability, inference
algorithms may instead measure the execution times of memory access se-
quences.)

Let missesC(s,~a) denote the number of misses that the cache C incurs per-
forming the sequence of memory accesses ~a starting in cache state s. We
define missesC(s,~a) by structural recursion on the length of the sequence ~a:

missesC(s, 〈〉) := 0
missesC(s, 〈a0, a1, . . . , an〉) := (1− hitC(s, a0))

+missesC(upC(s, a0), 〈a1, . . . , an〉).

An inference algorithm cannot control the cache state at the beginning of its
execution. This introduces nondeterminism when measuring the number of
misses incurred by a sequence of memory accesses:

measureC(~a) = {missesC(s,~a) | s ∈ CacheStateC}.

By performing “preparatory” memory accesses ~p, aimed at establishing a
particular cache state, before starting to measure the number of misses, an

9

CHAPTER 2. CACHES

inference algorithm can often extract more information about the cache:

measureC(~p, ~m) = {missesC(upC(s, ~p), ~m) | s ∈ CacheStateC}

where upC is lifted from individual memory accesses to sequences. The
preparatory memory accesses may reduce or even eliminate the nondeter-
minism from the measurement.

Later on, in pseudo code, we will use measureC(~p, ~m) as an expression that
will nondeterministically evaluate to one of the values of the set defined
above.

2.2.2 What Can Be Inferred?

Two caches may exhibit the same hit/miss behavior but differ internally, e.g.
in how they implement a replacement policy. For instance, there are many
different realizations of LRU replacement [S+04].

Since only a cache’s hit/miss behavior can be observed, it is impossible to in-
fer anything about how it is realized internally. For the purpose of modeling
a cache’s behavior such aspects are irrelevant anyway. The following defi-
nition captures when we consider two caches to be observationally equivalent :

Definition 3 (Observational Equivalence of Caches). Two caches C and
D are observationally equivalent, denoted C ≡ D, iff missesC(s0

C ,~a) =
missesD(s0

D,~a) for all memory access sequences ~a ∈ Address∗. Otherwise,
we call two caches observationally different.

2.3 Replacement Policies

In order to exploit temporal locality, most replacement policies use informa-
tion about the access history to decide which block to replace. Usually, they
treat cache sets independently of each other, such that accesses to one set
do not influence replacement decisions in other sets. Well-known policies in
this class include:

• Least-recently used (LRU): replaces the element that was not used for
the longest time.

• Pseudo-LRU (PLRU), a cost-efficient variant of LRU.

10

2.3. REPLACEMENT POLICIES

• First-in first-out (FIFO), also known as Round Robin.

• Not-most-recently used (NMRU) [GLYY12].

An exception to the rule of treating cache sets independently is Pseudo
Round Robin, which maintains a single “FIFO pointer” for all cache sets.
This policy is used in a number of ARM and Motorola processors [Gru12].
A policy that does not consider the access history is Pseudo Random,
which is used in several recent ARM CPUs [ARM10].

2.3.1 Permutation Policies

There are infinitely many observationally different replacement policies. So,
for inference to be possible, one needs to restrict the set of states PolStateP
of a policy P . As replacement policies are implemented in hardware, a simple
and realistic assumption is that their set of states is finite. Putting a bound
b on the number of states of the policy yields a finite set of observationally
different replacement policies. Unfortunately, b needs to be at least the facto-
rial of the associativity, which is the minimal number of states to implement
LRU. For such a b, there are too many observationally different replacement
policies for inference to be practically feasible.

However, we have identified a finite (for a fixed associativity) set of replace-
ment policies that contains many widely-used policies, and for which infer-
ence is feasible. We call these policies permutation policies.

Permutation policies maintain an order on the blocks stored in a cache set.
Such an order can be represented by a permutation π of the set of cache
ways. Then, π(i) determines which cache way stores the ith element in
this order. Upon a miss, the last element in the order, i.e., the block in
cache way π(A − 1) is evicted. In LRU, for example, π(0) and π(A − 1)
determine the cache ways that store the most- and the least-recently-used
blocks, respectively.

Permutation policies differ in how they update this order upon cache hits
and misses. In LRU, upon a cache hit, the accessed block is brought to
the top of the order, whereas in FIFO, cache hits do not alter the order
at all. More complex updates happen in case of, e.g., PLRU. The update
behavior upon hits and misses of a policy can be specified using a permutation
vector Π = 〈Π0, . . . ,ΠA−1,Πmiss〉. Here, permutation Πi determines how to
update the order upon an access to the ith element of the order, and Πmiss
determines how to update the order upon a cache miss. Then, the new order

11

CHAPTER 2. CACHES

π′ is π ◦ Πi or π ◦ Πmiss, respectively. By π ◦ Πi we denote the functional
composition of π and Πi defined by (π ◦ Πi)(x) = π(Πi(x)) for all x.

Upon a cache miss, all policies we have come across move the accessed block
to the top of the order and shift all other blocks one position down. In the
following, we thus fix Πmiss to be (A − 1, 0, 1, . . . , A − 2). Essentially, this
implies that upon consecutive cache misses a policy fills all of the ways of a
set and evicts blocks in the order they were accessed.

The following permutation policy template PT formalizes how a permutation
vector Π defines a replacement policy:

PT (Π) = (PolStateΠ, s
0
Π, evictΠ, upΠ),

where

PolStateΠ := {π : Way → Way | π is a permutation},
s0

Π := idWay = λi ∈ Way.i,

evictΠ(π) := π(A− 1),

upΠ(π,w) :=

{
π ◦ Πmiss : if w = miss,

π ◦ Ππ−1(w) : otherwise.

Fixing the miss permutations as described above has an additional benefit:
two permutation policies PT (Π) and PT (Ψ) with Πmiss = Ψmiss are obser-
vationally equivalent1 if and only if Πi = Ψi for all i ∈ {0, . . . , A− 1}. That
is, once the miss permutation is fixed, there is a unique representation of each
permutation policy. Without this restriction, there would be observationally
equivalent policies defined by different permutation vectors.

Thus, the set of permutation policies has the following three beneficial prop-
erties:

1. It includes well-known replacement policies, such as LRU, FIFO, and
PLRU (as demonstrated in 2.4 for associativity 8), in addition to a
large set of so far undocumented policies.

2. For a fixed miss permutation, each permutation policy has a unique
representation, which enables easy identification of known policies.

3. For all “realistic” associativities, the set is sufficiently small for efficient
inference.

1The notion of observational equivalence is transferred from caches to replacement
policies in the expected way.

12

2.3. REPLACEMENT POLICIES

ΠLRU
0 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠLRU
1 = (1, 0, 2, 3, 4, 5, 6, 7)

ΠLRU
2 = (2, 0, 1, 3, 4, 5, 6, 7)

ΠLRU
3 = (3, 0, 1, 2, 4, 5, 6, 7)

ΠLRU
4 = (4, 0, 1, 2, 3, 5, 6, 7)

ΠLRU
5 = (5, 0, 1, 2, 3, 4, 6, 7)

ΠLRU
6 = (6, 0, 1, 2, 3, 4, 5, 7)

ΠLRU
7 = (7, 0, 1, 2, 3, 4, 5, 6)

(a) LRU

ΠPLRU
0 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠPLRU
1 = (1, 0, 3, 2, 5, 4, 7, 6)

ΠPLRU
2 = (2, 1, 0, 3, 6, 5, 4, 7)

ΠPLRU
3 = (3, 0, 1, 2, 7, 4, 5, 6)

ΠPLRU
4 = (4, 1, 2, 3, 0, 5, 6, 7)

ΠPLRU
5 = (5, 0, 3, 2, 1, 4, 7, 6)

ΠPLRU
6 = (6, 1, 0, 3, 2, 5, 4, 7)

ΠPLRU
7 = (7, 0, 1, 2, 3, 4, 5, 6)

(b) PLRU

ΠFIFO
0 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠFIFO
1 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠFIFO
2 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠFIFO
3 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠFIFO
4 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠFIFO
5 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠFIFO
6 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠFIFO
7 = (0, 1, 2, 3, 4, 5, 6, 7)

(c) FIFO

Figure 2.4: Permutation vectors for LRU, PLRU & FIFO at
associativity 8.

13

CHAPTER 2. CACHES

2.3.2 Logical Cache Set States

Cache set states as defined in 2.2 model the contents of the physical ways
of the cache in addition to the state of the replacement policy. Several
such cache set states may exhibit the same replacement behavior on any
possible future access sequence. As an example, consider the two cache set
states 〈[0 7→ a, 1 7→ b], (0, 1)〉 and 〈[0 7→ b, 1 7→ a], (1, 0)〉 of a two-way set-
associative cache managed by a permutation policy. In both states, the order
on the blocks maintained by the policy is a then b, and this order will change
in the same way upon future memory accesses.

Logical cache set states abstract from the physical location of cache contents,
distinguishing two states if and only if they differ in their possible future
replacement behavior. Permutation policies give rise to a particularly simple
domain of logical cache set states, ordering cache contents according to the
state of the permutation policy:

LogicalSetState := Way → (Tag ∪ {⊥}).

A cache set state of a permutation policy can be transformed into a logical
state as follows: logical(〈bs, π〉) := bs ◦ π. Both of the above example cache
set states map to the same logical state [0 7→ a, 1 7→ b]. For brevity, in the
following, we will denote such a state by [a, b].

2.4 Cache Optimizations

Processor manufacturers have developed and implemented a number of tech-
niques to optimize the memory hierarchy. While some of these optimizations
only influence the performance or the power consumption of a cache, others
also modify its logical structure and violate some of the assumptions we made
in the previous sections. Prefetching, for instance, can violate the assump-
tion that the cache state is only modified upon a memory access. For an
extensive treatment of cache optimizations we refer to [HP11b]. In the fol-
lowing paragraphs, we briefly introduce some of the optimizations that were
relevant to us when developing and implementing our inference algorithms.

Hardware Prefetching Hardware prefetchers try to predict future data
accesses, and load memory blocks before they are actually needed. The
prefetched blocks can either be placed in a dedicated buffer or directly in the

14

2.4. CACHE OPTIMIZATIONS

cache, which leads to the eviction of other blocks in the cache. There are
several types of hardware prefetchers:

• An adjacent cache line prefetcher fetches, upon a cache miss, one or
more cache lines that are next to the accessed address.

• A stride prefetcher tries to detect patterns in the memory accesses in
order to predict the next addresses.

• A streamer prefetcher detects multiple accesses to a single cache line or
accesses to a sequence of consecutive cache lines, and loads the following
line.

Often, prefetchers do not prefetch accross page boundaries [Int12a].

Cache Indexing Most modern computer systems use virtual memory :
they divide the physical memory into pages and allocate them to different
processes, giving each process a contiguous virtual address space. There are
different possibilities as to which address to use for the index and the tag of
a cache:

• Virtually indexed, virtually tagged caches use the virtual address for
both the index and the tag, which can lead to faster caches than other
approaches because no address translation is required. However, there
are a number of drawbacks. After every process switch, the virtual
addresses refer to different physical addresses, which requires the cache
to be flushed. Apart from that, two different virtual addresses can refer
to the same physical address; this is also called “aliasing”. In such a
case, the same data can be cached twice in different locations. More-
over, virtual-to-physical address mappings can change, which requires
the cache to be flushed as well.

• Physically indexed, physically tagged caches use the physical address
for both the index and the tag. While this approach avoids the prob-
lems just mentioned, it is much slower as every cache access requires
expensive address translations.

• Virtually indexed, physically tagged caches combine the advantages of
the two other approaches. They use the part of the address that is
identical for both the virtual and physical address (i.e. a part of the
page offset) to index the cache. While checking the cache for this index,
the remaining bits of the virtual address can be translated, and thus
the physical address can be used as tag. This approach is, however,
limited to smaller caches.

15

CHAPTER 2. CACHES

Modern processors often use virtually indexed, physically tagged first-level
caches and physically indexed, physically tagged higher-level caches.

Cache Hierarchy Management Policies Multi-level caches use different
approaches regarding the question whether the data stored in lower-level
caches must also be present in higher-level caches. (Note: The terms lower-
level cache and higher-level cache are used inconsistently in the literature.
The more common variant, however, seems to refer to caches that are closer to
the processor as lower-level caches (i.e. the first-level cache is the lowest-level
cache). We will use this definition in the following). In (strictly) inclusive
cache hierarchies, every level of the cache hierarchy is a subset of the next-
higher level. In exclusive cache hierarchies, on the other hand, data is in
at most one level of the cache hierarchy. Most recent AMD x86 processors
use this design. In non-inclusive (sometimes also called non-inclusive/non-
exclusive (NI/NE) or mainly inclusive) caches, data in lower-level caches
may often also be in higher-level caches but is not required to. This design
is used by many Intel x86 CPUs [HP11a].

Nonblocking caches A nonblocking cache can serve other access requests
while processing a cache miss. This reduces the effective miss penalty [FJ94].

Way Prediction Way prediction is a technique to reduce the hit time
of a cache. It keeps extra bits for each set to predict the way of the next
access. If the prediction is right, only a single tag comparison needs to be
performed [HP11b].

Victim Caches A victim cache stores recently evicted blocks. In case
of a cache miss, the processor first checks whether the requested element
is in the victim cache before forwarding the request to the next level of
memory. Victim caches are typically fully-associative and can hold 4 to 16
cache blocks [ZV04].

Trace Caches A trace cache is an advanced form of a first-level instruction
cache. It sits between the instruction decode logic and the execution core
and stores already decoded instructions. Trace caches are for example used
in the Intel Pentium 4 processor [HSU+01].

16

2.4. CACHE OPTIMIZATIONS

Hash Functions While “traditional” caches use a part of the memory
address to index the cache, Intel uses instead a hash function for the third-
level cache of its Sandy Bridge architecture2.

2http://www.realworldtech.com/sandy-bridge/8/

17

http://www.realworldtech.com/sandy-bridge/8/

CHAPTER 2. CACHES

18

3
Related Work

3.1 Measurement of Cache Hierarchy Parameters

Several publications have presented approaches for determining parameters
like the cache size, the associativity and the block size of data caches through
measurements. Some of these approaches use hardware performance coun-
ters to perform the measurements [CD01, D+04, JB07, BT09], while the oth-
ers use timing information [SS95, MS96, LT98, TY00, BC00, Y+04, Y+05b,
Y+05c, Y+05a, Y+06, Man04, GD+10, Cha11, CS11].

Only few [Y+06, CD01, BC00, BT09] have also analyzed these parameters for
instruction caches. However, in contrast to our implementation, the approach
described in [Y+06] generates and compiles C source code dynamically, thus
requiring access to the compiler at runtime. On the other hand, [CD01] relies
on specific features of the gcc compiler. Blanquer and Chalmers [BC00]
require the user to supply a number of primitives in assembly for a given
architecture. Babka and Tůma [BT09] state that they use “chains of jump
instruction” but do not describe their implementation in detail.

Some of these approaches make assumptions as to the underlying replacement
policy (e.g. [SS95] and [TY00] assume LRU replacement is used). However,
only a few publications have tried to determine the cache replacement poli-
cies as well. The approaches described in [CD01] and [BC00] are able to
detect LRU-based policies but treat all other policies as random. John and
Baumgartl [JB07] use performance counters to distinguish between LRU and
several of its derivatives.

Several papers have used measurement-based approaches to analyze other
parts of a computer system: [SS95, TY00, CS11] have analyzed TLB param-
eters, [UM09] branch predictors, [DSGP08] multi-core specific features, and
[W+10] parameters of the GPU.

19

CHAPTER 3. RELATED WORK

Conducting a comprehensive literature review on the topics of our interest
was rather difficult. This is, on the one hand, because the literature is scat-
tered over a number of different research areas, including self-optimizing soft-
ware [Y+05c], compiler optimizations [CS11], performance-analysis [CD01],
benchmarking [MS96], and WCET analysis [JB07]. On the other hand, the
publications use different terminology for describing similar goals, e.g., “au-
tomatic measurement of hardware parameters” [Y+05c], “automatic mem-
ory hierarchy characterization” [CD01], “memory organization benchmark”
[BC00], “cache-memory and TLB calibration tool” [Man04], or “experimen-
tal parameter extraction” [JB07]. In fact, several papers we found claimed
to be the first in their area, although we found earlier papers describing
similar work: [Y+06] claims that “neither well known benchmarks [...], nor
existing tools” attempt to measure the instruction cache capacity, and [JB07]
believes that “techniques to discover the replacement strategies by experi-
ments have not been described before”, although both [BC00] and [CD01]
were published at least four years earlier; [D+04] claims to be the first to
use hardware performance counters to analyze cache parameters, although
[CD01] was published more than two years earlier.

In the following paragraphs we describe the most relevant publications more
in detail.

Measuring Cache and TLB Performance and Their Effect on Bench-
mark Runtimes [SS95] Most publications on memory characterization
identify the paper by Saavedra and Smith as the first paper in this area.
Using a Fortran benchmark, they create a set of curves that has to be inter-
preted manually to determine the cache size, the associativity, and the block
size of first and second level data caches, as well as the size, the associativity
and the page size of the TLB.

Data Cache Parameter Measurements [LT98] and Measuring Data
Cache and TLB Parameters under Linux [TY00] Thomborson et
al. extended Saavedra and Smith’s approach by separating read from write
accesses, by developing a different algorithm to infer the associativity, and
by analyzing a larger set of cache parameters (e.g. cache write policies).

lmbench: Portable Tools for Performance Analysis [MS96] lmbench

is a comprehensive benchmark suite that can detect the size and the block size
of data caches, besides a number of other parameters like the bandwidths of

20

3.1. MEASUREMENT OF CACHE HIERARCHY PARAMETERS

memory accesses, or the latencies of disk accesses or context switches. Sim-
ilar to our approach, it uses a form of pointer chasing to analyze caches.
Though the paper dates back to 1996, the tools seems to be still maintained
(as of November 2012, the tool was last updated in 2010).

MOB: A Memory Organization Benchmark [BC00] This paper was
the first to automatically analyze instruction cache parameters and replace-
ment policies. However, Blanquer and Chalmers only distinguish between
LRU and random replacement. They try to determine the replacement pol-
icy by performing three tests:

1. Access repeatedly associativity many elements that map to the same
cache set.

2. Access repeatedly 2*associativity many elements that map to the same
cache set.

3. Access repeatedly 1.5*associativity many elements that map to the
same cache set.

The decision between LRU and random is then based on the assumption
that in a LRU system, the tests 2 and 3 should lead to the same miss rate,
whereas under random replacement, test 3 should cause about half as many
misses as test 2. The replacement policy is then considered to be an LRU
policy if the miss rate of test 3 is greater than the middle point between test
1 and 2, and random otherwise.

Automatic Memory Hierarchy Characterization [CD01] This paper
by Coleman and Davidson seems to be the first to use hardware performance
counters to infer memory hierarchy parameters such as the cache size, the
associativity and the block size of data and instruction caches. Moreover, the
authors describe an approach to detect LRU-based replacement policies, and,
similar to Blanquer and Chalmers, they treat all other policies as random.
Their algorithm works as follows:

• Access associativity many elements that map to the same cache set.

• Access the first associativity-1 elements again.

• Access a new element that maps to the same cache set.

• Start the performance counters and measure the number of misses when
accessing element i again to determine whether element i was replaced.

21

CHAPTER 3. RELATED WORK

This experiment is performed for each i, s.t. 0 ≤ i ≤ associativity−1. If the
same element is replaced every time, the replacement policy is considered to
be LRU-based, otherwise it is considered to be random.

X-Ray [Y+04, Y+05b, Y+05c, Y+05a, Y+06] X-Ray is a tool that can
detect the cache sizes, associativities and block sizes of data and instruction
caches, in addition to a number of other parameters like latencies or the num-
ber of available registers. X-Ray uses an approach that generates, compiles
and executes C Code at runtime.

Exact Cache Characterization by Experimental Parameter Extrac-
tion [JB07] John and Baumgartl describe an algorithm that can be used
to detect LRU and some of its derivatives. The authors claim that “the pre-
sented algorithms are easy adapt and thus allow the identification of other
strategies, too”. Their algorithm works as follows (it assumes the cache
size S, the associativity A, and the block size B to be known and to be pow-
ers of two):

1. Invalidate the cache.

2. Fill the cache by reading associativity many ways w1, . . . , wA (reading
a way means performing a read access in all blocks of that way).

3. Read a subset of the ways from step 2 again.

4. Read a new way, which replaces way wi for some i ∈ {1, . . . , A}.

5. nw1 := count misses when reading way w1 again
...
nwA

:= count misses when reading way wA again.

The authors then claim that exactly one of {nw1 , . . . , nwA
} “has a significantly

larger value than the other [. . .] counters. The associated way has been
replaced [. . .].” The sequences for step 3 are chosen such that different
replacement policies can be distinguished from the results. There is, however,
a major flaw in this description of the algorithm. Assume a cache with an
LRU replacement policy. When implementing the algorithm like this, then in
step 4, way w1 is replaced, and in step 5, reading way wi replaces way wi+1.
Thus, all accesses in step 5 will be misses, and the values of nw1 , . . . , nwA

will
be roughly the same. The problem could for example be fixed by repeating
step 1 to 4 before every part of step 5. However, the authors do not mention
how they implemented this algorithm.

22

3.1. MEASUREMENT OF CACHE HIERARCHY PARAMETERS

Apart from that, there are a number of major differences to our work:

• John and Baumgartl’s approach is not able to determine the replace-
ment policy automatically. The access sequences in step 3 need to be
generated by hand for every replacement policy and every associativity.
Moreover, the corresponding code for these sequences has to be written
manually.

• The authors do not formally analyze which class of replacement poli-
cies their approach is able to detect. We have identified several poli-
cies that would only be detected by our approach. Consider for ex-
ample the class of permutation policies for which Πi(0) = 0 for all
i ∈ {0, . . . , A − 1}. This class contains the FIFO policy. But it also
contains, for example, the following (hypothetical) approximation to
FIFO which can be described (at associativity 4) by the permutation
vector Πi = (0, 2, 1, 3) for all i ∈ {0, . . . , 3}. John and Baumgartl’s
approach is not able to distinguish these policies from FIFO as the way
replaced in step 4 is always w1.

• John and Baumgartl do not attempt to analyze instruction caches.

• Their implementation requires a special real-time operating system en-
vironment and needs to be adapted to every different processor archi-
tecture.

Servet: A benchmark suite for autotuning on multicore clusters
[GD+10] González-Domı́nguez et al. present a tool that can detect pa-
rameters of cache hierarchies used in multi-core systems, including cache
sizes. To this end, they describe a variation of Saavedra and Smith’s algo-
rithm that uses a probabilistic approach for dealing with physically indexed
lower level caches. This approach is based on the assumption that the vir-
tual pages are uniformly distributed over the physical address space. They
further assume that the cache size is a power of two if the size is less than
1MB and a multiple of 1MB otherwise.

Robust Method to Determine Cache and TLB Characteris-
tics [Cha11] In his master’s thesis, Chandran claims that all previous
approaches “fail when encoutering [sic] multiple levels of cache and TLB
present in current generation of processors.” He then presents a modified
version of the calibrator framework [Man04] that uses a “staggered and
robust approach to first detecting the hardware entities and their sizes and

23

CHAPTER 3. RELATED WORK

then disambiguating between the entities by deducing their block sizes.” He
evaluates his approach on four recent Intel and one AMD CPU and claims
that his “approach produces more accurate and complete results than exist-
ing tools”. However, the presented results are not particularly convincing.
Although Chandran’s tool returned the correct values for all reported results,
select results are omitted (the results for the L2 cache parameters are for ex-
ample only reported for one CPU, and for the AMD CPU, only the results
for the L1 data cache are presented). This leaves the impression that his tool
did not return the correct values in these cases.

Moreover, several parts of Chandran’s thesis (including the introduction)
consist mainly of copy-and-paste plagiarism from both [D+04] and [Man04].
Both papers were cited in the thesis but not anywhere near the plagiarized
sections.

Portable Techniques to Find Effective Memory Hierarchy Param-
eters [CS11] This paper analyzes memory parameters in order to build
compilers that can perform model-specific tuning automatically. It presents
algorithms to infer the cache size, the associativity and the block size of first
level data caches and the size and the block size of lower level caches, as
well as latencies and TLB parameters. The authors try to build a portable
solution that does not depend on system-specific features like huge pages or
performance counters. However, in contrast to our approach, they do not
try to achieve exact results, they rather try to detect “effective values” for
which they claim to provide better optimization results than would be ob-
tained using the actual values. Because they do not consider the effect of
physically indexed caches, their results for the size of lower levels caches is
usually significantly smaller than the actual size (they argue that this is the
“effective size”).

24

3.2. MACHINE LEARNING

3.2 Machine Learning

Caches as defined in Section 2.2 define a formal language: a sequence of
memory accesses is a member of the language if the final memory access in
the sequence results in a cache hit, if the sequence is fed to the cache starting
in its initial state. Thus it would be interesting to apply methods to learn
formal languages.

Given an infinite set of memory addresses, caches are infinite-state systems.
However, replacement policies as defined in Section2.2 are finite-state sys-
tems. It thus might be possible to adapt Angluin’s algorithm to learn regular
languages [Ang87] to our problem. Angluin’s algorithm is based on member-
ship and equivalence queries. It is conceivable but not immediately obvious
that membership queries can be realized through measurements. Equiva-
lence queries can be realized—at least probabilistically—using membership
queries as described in [Ang88].

The connection between caches and canonical register automata [C+11] is
more immediate. We are thus exploring the use of Howar et al.’s technique
to learn such automata [H+12]. The question is whether general automata-
learning methods scale to the size of the state space of a replacement policy
such as LRU.

25

CHAPTER 3. RELATED WORK

26

4
Algorithms

In this chapter, we describe our approach for inferring the different cache
parameters. More formally, we present algorithms that derive parameter
values A,B,N , and P through measurements on an implementation of a
cache C, such that T (A,B,N, P) ≡ C. Instead of deriving N directly, we
first derive the cache size S. N can then be obtained by N = S

A·B .

In general, our algorithms are all based on the following scheme:

1. Generate multiple sequences of memory accesses.

2. Measure the number of cache misses (using hardware performance coun-
ters), or alternatively the execution time, on each of the sequences.

3. Deduce the property of interest from the measurement results and some
structural assumptions. This step usually involves finding the point at
which a “jump” in the measurement results occurs.

Notations In the following, we will use the notation ~an to denote the n-fold
concatenation of the sequence ~a, i.e.,

~a0 := 〈〉
~an := ~a ◦ ~an−1,

where the operator ◦ is used for concatenating sequences.

To compactly represent strided access sequences, we use

〈〈base, stride, count〉〉

to denote the access sequence

〈base, base+ 1 · stride, . . . , base+ (count− 1) · stride〉.

27

CHAPTER 4. ALGORITHMS

During the development of our tool, we usually experimented with a number
of different algorithms for each of the cache parameters we were interested in.
We usually started with a simple algorithm and then we modified and im-
proved this algorithm based on the problems we encountered. The structure
of the following sections reflects this development process.

4.1 Cache Size/Associativity

In this section, we present different algorithms to infer the cache size S and
the associativity A, and we analyze their strengths and weaknesses.

4.1.1 Simple Algorithms

Cache Size Algorithm 1 illustrates our initial approach for determining
the cache size.

Algorithm 1: Cache Size (Simple Algorithm)

Output: Cache Size
measurements[maxSize]
curSize← 1
while curSize < maxSize do

~p← 〈0, 16, ..., curSize ∗ 1024〉
~a← 〈0, 16, ..., curSize ∗ 1024〉100

measurements[curSize]←measureC(~p,~a)
if “jump occurred” then

return curSize− 1

curSize← curSize+ 1

The algorithm accesses a contiguous memory area of curSize bytes repeat-
edly with a stride of 16 bytes (which we assume to be a lower bound on
the block size). As long as curSize is less than or equal to the actual cache
size, all accessed bytes fit into the cache and thus, no misses should occur.
If curSize exceeds the cache size, we expect to see a sharp increase in the
number of misses.

Figure 4.1 shows the results of running this algorithm on an Intel Core 2 Duo
E6750 (32kB 8-way associative L1 Cache).

28

4.1. CACHE SIZE/ASSOCIATIVITY

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

L1 Misses

100000

200000

300000

400000

500000

600000

700000

800000

0

100000

200000

300000

400000

500000

600000

700000

800000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Time (ns)

Figure 4.1: Result of running the simple algorithm for determining the
cache size on an Intel Core 2 Duo E6750 (32kB L1 Cache).

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

L1 Misses

0

100000

200000

300000

400000

500000

600000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Time (ns)

Figure 4.2: Result of running the simple algorithm with pointer chasing on
an Intel Core 2 Duo E6750 (32kB L1 Cache).

The left diagram was created using hardware performance counters. Here,
the ”jump” at 32kB is clearly visible (at this stage of the development process,
we analyzed the graphs manually to detect the jumps; we will describe how to
do this automatically when we describe our final algorithms). The diagram
also shows a second jump at 36kB (i.e. 32kB + 4kB, where 4kB is the way
size of the cache). The reason for this behavior is that between 32kB and
36kB some cache accesses lead to cache hits and other accesses to cache
misses; if the memory area is larger than 36kB, all memory accesses lead
to cache misses (this behavior, however, depends on the replacement policy;
thus we will not use it to detect the way size).

The right diagram shows the result of the time-based algorithm. Here, the
jump is hardly visible. A number of factors can contribute to this behav-
ior, e.g., non-blocking caches, out-of-order execution, prefetching, and other
cache optimizations like way-prediction.

To minimize the effects of non-blocking caches and out-of-order execution,
we can we serialize memory accesses by using a form of “pointer chasing”
where each memory location contains the address of the next access (we will
describe this technique in more detail in Section 5.3).

29

CHAPTER 4. ALGORITHMS

Figure 4.2 shows the result of this modification. Now, a slight jump in the
diagram for the time based approach is visible. But it is hard to find the
exact location of the jump. Moreover, there is also already a small jump
between 31kB and 32kB in the left diagram. (Interestingly, the overall times
are lower when using this approach. This is probably because of the lower
overhead for address computations.)

Associativity Algorithm 2 shows our first approach at inferring the asso-
ciativity.

Algorithm 2: Associativity (Simple Algorithm)

Input: S ← Cache Size
Output: Associativity
measurements[maxAssoc]
curAssoc← 1
while curAssoc < maxAssoc do

~p← 〈〈0, S, curAssoc〉〉
~a← 〈〈0, S, curAssoc〉〉100

measurements[curAssoc]←measureC(~p,~a)
if “jump occurred” then

return curAssoc− 1

curAssoc← curAssoc+ 1

The algorithm uses the fact that the cache size is always a multiple of the
way size. Thus, when accessing the memory with a stride of cache size many
bytes, all accesses map to the same cache set. If curAssoc exceeds the actual
associativity, the cache can no longer store all accessed memory locations,
and so we expect to see a jump in the number of misses.

Figures 4.3 and 4.4 show the result of running this algorithm on the same
platform as above, both with and without pointer chasing.

4.1.2 A More Robust Algorithm

Based on the observation that the algorithm to infer the associativity worked
quite well, we developed a new algorithm (Algorithm 3) that uses a similar
approach and that can determine both the associativity and the cache size.
This algorithm uses the fact that the way size is always a power of two on
modern processors.

30

4.1. CACHE SIZE/ASSOCIATIVITY

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L1 Misses

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time (ns)

Figure 4.3: Result of running the simple algorithm for the associativity
without pointer chasing on an Intel Core 2 Duo E6750 (8-way associative).

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

L1 Misses

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time (ns)

Figure 4.4: Result of running the simple algorithm for the associativity
with pointer chasing on an Intel Core 2 Duo E6750 (8-way associative).

Algorithm 3: Cache Size/Associativity

Output: (Cache Size, Associativity)
ws← maxWaysize
assocold ← 0
while true do

for (assoc← 1; ; assoc← assoc+ 1) do
~p← 〈〈0, ws, assoc〉〉
~a← 〈〈0, ws, assoc〉〉100

measurements[assoc]←measureC(~p,~a)
if “jump occurred” then

if assoc− 1 = 2 ∗ assocold then
return (ws ∗ 2 ∗ assocold, assocold)

else
assocold = assoc− 1
break

ws = ws/2

31

CHAPTER 4. ALGORITHMS

The algorithm iterates over different possible way sizes ws, and determines
for every ws how many elements can be accessed with a stride of ws until
the accessed elements don’t fit in the cache any more, which means that a
jump in the number of misses occurs. As long as ws is greater than or equal
to the actual way size, this value stays the same (in fact, it corresponds to
the actual associativity of the cache). If ws gets smaller than the way size,
the value doubles.

Figure 4.5 shows the result of running this algorithm. The upper diagram
was created using performance counters. Note that the curves for ws ≥ 4096
coincide. The lower diagram uses the execution time. The second jump in
the curve for ws = 65536 is caused by misses in the second-level cache.

4.1.3 An Algorithm Supporting Physically Indexed
Caches

All algorithms we have considered so far are based on the assumption that
the memory area they use is physically contiguous or that the caches are
virtually indexed. However, most recent processors use physically indexed
second-level caches, and some recent ARM CPUs even physically indexed
first-level data caches [ARM10]. As the way size of these caches is usually
larger than the page size, consecutive virtual addresses need not map to
consecutive cache sets, and virtual addresses that are way size-apart need
not map to the same cache set.

One way to deal with this problem is to allocate huge pages1. This allows us
to allocate physically-contiguous memory areas that are significantly larger
than the standard page size of 4 kB and usually a multiple of the way size of
large caches.

Unfortunately, however, huge pages are not activated by default on common
Linux-based systems, and superuser privileges are required to activate them.
Moreover, on some platforms, huge pages are not available at all; in particular
older processors or CPUs for embedded systems might not support them.
They are also not available on Android-based devices.

We therefore developed an alternative approach for dealing with physically
indexed caches that does not require huge pages. Algorithm 4 illustrates this
approach.

1http://en.wikipedia.org/wiki/Page_size.

32

http://en.wikipedia.org/wiki/Page_size.

4.1. CACHE SIZE/ASSOCIATIVITY

0

20000

40000

60000

80000

100000

120000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

65536 32768 16384 8192 4096 2048 1024 512

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

65536 32768 16384 8192 4096 2048 1024 512

Figure 4.5: Result of running Algorithm 3 on an Intel Core 2 Duo E6750
(32kB 8-way associative L1 cache).

33

CHAPTER 4. ALGORITHMS

Algorithm 4: Cache Size/Associativity (Supporting Physically In-
dexed Caches)

Input: -
Output: (Cache Size, Associativity)

List pages
addMaxNumNoncollidingPages(pages)
nNonCollidingPages← pages.size− 1
removeNonCollidingPages(pages)
associativity ← pages.size− 1
for (ws← pagesize/2;ws > minWaysize;ws← ws/2) do

pages.last← pages.last+ ws
~p← 〈pages.first, ..., pages.last〉
~a← 〈pages.first, ..., pages.last〉100

measurements[pages.size]←measureC(~p,~a)
if “jump occurred” then

continue
else

ws← 2 ∗ ws
break

if ws ≥ pagesize then
size← nNonCollidingPages ∗ pagesize

else
size← ws ∗ associativity

return (size, associativity)

34

4.1. CACHE SIZE/ASSOCIATIVITY

Algorithm 5: Helper Functions for Algorithm 4

procedure addMaxNumNoncollidingPages(List pages)
curPage← 0
nCollisions← 0
while nCollisions < 100 do

~p← 〈pages.first, ..., pages.last, curPage〉
~a← 〈pages.first, ..., pages.last, curPage〉100

measurements[pages.size]←measureC(~p,~a)
if “jump occurred” then

nCollisions← nCollisions+ 1

else
pages.add(curPage)
nCollisions← 0

curPage← curPage+ pagesize

pages.add(curPage)

procedure removeNonCollidingPages(List pages)
foreach page in pages do

pages.remove(page)
~p← 〈pages.first, ..., pages.last〉
~a← 〈pages.first, ..., pages.last〉100

measurements[pages.size]←measureC(~p,~a)
if “jump occurred” then

continue
else

pages.add(page)

35

CHAPTER 4. ALGORITHMS

The algorithm first calls the procedure addMaxNumNoncollidingPages. This
procedure creates a maximal list of pages (more specifically, addresses that
are a multiple of the page size) that does not contain a collision (by collision
we mean a set of more than associativity many pages that map to the same
cache set). The algorithm stops when the previous 100 pages that were
examined all resulted in collisions (we found this threshold to work well for
first- and second-level caches). Before the procedure returns it adds the
last page it examined to the list. So at this point, the list contains exactly
one collision. Furthermore, the number of non-colliding pages found by the
procedure (i.e. the current size of the list minus one) is stored in a variable.

In the next step, the algorithm removes all pages from the list that are not
part of this collision. This step thus determines the associativity of the cache,
which corresponds to the new size of the list minus one. (Note that this step
could be optimized by modifying addMaxNumNoncollidingPages such that it
additionally returns the list after the first collision was found, and using this
list for the current step. This would, however, still require removing pages
from the list, as not all pages in the list are necessarily part of the collision).

After this, the algorithm checks whether the way size is a smaller than the
page size (note that we assume both to be powers of two). This is done by
adding different offsets to the last page in the list. As long as this offset is
greater than or equal to the actual way size, all accesses still map to the same
cache set and we can observe a collision. If the offset is smaller than the way
size, the last access maps to a different set, and hence, no collision occurs.

If the way size is indeed smaller than the page size, the cache size can be
obtained by multiplying the way size with the associativity. If the way size is
not smaller than the page size, the cache size can be computed by multiplying
the maximum number of non-colliding pages (that was determined in the first
step of the algorithm) with the page size.

Detecting the “jumps” At several points, the algorithm tries to detect
jumps in the measurement results in order to determine whether more than
associativity many elements were accessed in the same cache set.

If performance counters are used for the measurements, one simple method
is to use a fixed threshold. Ideally, we would expect no misses if all accessed
elements fit into the cache. However, due to measurement overhead and
interference (see Section 5.2), the actual measurement results will typically
be larger than zero. On the other hand, as the access sequences are executed
100 times, there must be at least 100 misses if one element does not fit into the
cache (for common replacement policies such as LRU there are significantly

36

4.2. BLOCK SIZE

more misses). We found that using 100 misses as a threshold for detecting
the jumps worked well on all systems we tested.

If timing information is used for the measurements, detecting the jumps is
more difficult, as one has to deal with relative thresholds instead of fixed
values.

One possibility is to consider the time differences when adding additional
pages. This difference should be significantly higher when the new page
causes a collision. Another possibility is to use simple linear regression2, i.e.
fitting a line through the previous measurement results that minimizes the
sum of squared residuals. If the current measurement result is significantly
above that curve, we would assume that a miss occurred.

However, a problem with both of these approaches is that other factors can
influence the execution time. In particular, some optimization techniques
such as way prediction (see Section 2.4) can lead to jumps in the execution
time when accessing more elements, even if all these accesses are cache hits.

We therefore developed another approach, that worked quite well in most
cases: We perform an additional measurement in which we replace the cur-
rent element by one that is guaranteed to be in the cache, such that the
same number of elements is accessed in both cases. Such an element is for
example the current element with an offset that is larger than the block size
but smaller than the way size. We then compare the two measurements;
if the original result is significantly higher then the result of the additional
measurement, we assume that a cache miss occurred. This approach could
be further improved by performing yet another measurement in which the
last access is guaranteed to be a cache miss; one could then take the midpoint
between the two additional measurements as a threshold. To guarantee that
accessing the last element results in a miss, one could use different elements
for each access. This can, however, be problematic as misses in higher-level
caches might increase the execution in this case.

4.2 Block Size

In the following, we assume, for reasons of simplicity, that the memory is
space is physically contiguous. It would, however, also be possible to extend
our approach from the last section to these algorithms.

2http://en.wikipedia.org/wiki/Simple_linear_regression

37

http://en.wikipedia.org/wiki/Simple_linear_regression

CHAPTER 4. ALGORITHMS

Algorithm 6: Block Size (Simple Algorithm)

Input: S ← Cache Size, ws← Way Size
Output: Block Size
measurements[maxSize]
curSize← 32
while curSize < maxSize do

~p← 〈0, curSize, 2 ∗ curSize, ..., S〉
~a← 〈0, 16, 32, ..., S〉
measurements[curSize]←measureC(~p,~a)
if “jump occurred” then

return curSize/2

curSize← curSize ∗ 2

A straight-forward approach to detecting the block size of a cache is illus-
trated in Algorithm 6. The algorithm first accesses the cache with a stride of
curSize bytes. Then it measures the misses when accessing the cache again
with a stride of 16 bytes (we assume that 16 bytes is a lower bound on the
block size). As long as curSize is less than or equal to the actual block size,
we would expect to get zero misses. If curSize is twice the actual block size,
we would expect to get a miss for every second block.

However, if the cache uses an adjacent cache line prefetcher (see Section 2.4),
this approach does not work. A more sophisticated algorithm, that is robust
against this form of prefetching, is shown in Algorithm 7.

Algorithm 7: Block Size

Input: A← Associativity, ws← Way Size
Output: Block Size
measurements[maxSize]
curSize← 32
while curSize < maxSize do

~a1 ← 〈〈0, ws,A/2〉〉
~a2 ← 〈〈ws ∗ (A/2) + curSize, ws,A/2 + 1〉〉
~a← (~a1 ◦ ~a2)100

measurements[curSize]←measureC(~0,~a)
if “jump occurred” then

return curSize
curSize← 2 ∗ curSize

38

4.3. REPLACEMENT POLICY

The algorithm first accesses dassociativity/2e many elements that map to
the same cache set. Then bassociativity/2 + 1c many elements are accessed
with an offset of curSize such that all accesses map to the same cache set as
long as curSize is less than the actual block size, and if curSize exceeds the
actual block size, the accesses map to two different cache sets. Thus, in the
first case, the cache is not large enough to store all accessed locations, while
in the second case, all elements fit into the cache.

4.3 Replacement Policy

4.3.1 Intuitive Description of Algorithm

Our algorithm determines the permutation vector defining a permutation
policy one permutation at at time. To determine permutation i, we execute
the following three steps:

1. Establish a known logical cache set state.

2. Trigger permutation i by accessing the ith element of the logical cache
set state.

3. Read out the resulting logical cache set state.

Then, relating the state established in step 1 with the state determined in step
3 yields permutation i. Given a known logical cache set state [a0, . . . , aA−1],
step 2 simply amounts to accessing address ai.

Establishing a known logical cache set state Given the fixed miss per-
mutation, as described in Section 2.3, we can establish a desired logical state
simply by causing a sequence of cache misses to the particular cache set. Ac-
cessing the sequence 〈aA−1, . . . , a0〉 consisting of addresses a0, . . . , aA−1 map-
ping to the same cache set, results in the logical cache set state [a0, . . . , aA−1],
provided that all of the accesses result in cache misses. Cache misses can be
assured by first accessing a sufficiently large number of other memory blocks
evicting all previous cache contents.

Reading out a logical cache set state We need to determine the position
of each block ak of the original logical state in the resulting logical state. We

39

CHAPTER 4. ALGORITHMS

Algorithm 8: Naive Implementation of the Replacement Policy Infer-
ence Algorithm.

Input: A← Associativity
B ← Block Size
N ← Number of Sets
W ← B ·N (= Way Size)

procedure initializeBasePointers()

emptyBase ← 0
initBase ← emptyBase + A ·W
evictBase ← initBase + A ·W

seq function emptyCacheSet(int set)
return 〈〈emptyBase + set ·B,W,A〉〉

seq function initializeSet(int set)
return 〈〈initBase + set ·B + (A− 1) ·W,−W,A〉〉

seq function accessBlockInSet(int block, int set)
return 〈initBase + set ·B+block·W 〉

seq function evictKBlocksInSet(int k, int set)
return 〈〈evictBase + set ·B,W,k〉〉

int function newPosOfBlockInPerm(int block, int perm)

initializeBasePointers()

empty ← emptyCacheSet(0)
init ← initializeSet(0)
accPerm ← accessBlockInSet(perm, 0)
accBlock ← accessBlockInSet(block, 0)
for newPos ← A− 1 downto 0 do

evictk ← evictKBlocksInSet(A−newPos, 0)
prep ← empty◦init◦accPerm◦evictk
if measureC(prep, accBlock) = 1 then

return newPos

40

4.3. REPLACEMENT POLICY

do so by a sequence of checks that determine whether the block’s new position
is greater than j, for j ∈ {0, . . . , A− 1}.

By accessing block ak and comparing the performance counters before and
after the access, we can—at least in theory—determine whether the access
caused a miss, and thus whether ak was cached or not. By causing A − j
additional cache misses before, we can determine whether the block’s position
was greater than j or not.

Each such check destroys the cache state. Thus, before each check, the state
before the measurement needs to be reestablished by going through steps 1
and 2 again.

4.3.2 A Naive Implementation

Algorithm 8 shows a naive implementation of the function to determine a
block’s new position after triggering a particular permutation. We first in-
troduce five helper functions:

• initializeBasePointers() initializes the three pointers emptyBase,
initBase, and evictBase, which are maintained in global variables.
These pointers are used to access disjoint memory areas of the size
of the cache. Note that they map to the same cache set.

• emptyCacheSet(int set) generates an access sequence used to evict
previous contents from a given cache set, where cache set 0 is defined
to be the set that emptyBase maps to.

• initializeSet(int set) generates an access sequence to establish a
known logical state in set set . As the addresses in this sequence are dis-
joint from those in the sequence produced by emptyCacheSet(int set),
and both sequences entirely fill the cache, both sequences will never
produce any cache hits.

• accessBlockInSet(int block, int set) generates a singleton access se-
quence to the blockth element of the logical state created by the function
initializeSet(set).

• evictKBlocksInSet(int k, int set) generates a sequence of k memory
accesses to set set from the memory area pointed to by evictBase.
Accessing this sequence will cause k misses in the desired set.

The loop in newPosOfBlockInPerm performs successive measurements to de-
termine the position of the blockth element of the logical state after triggering

41

CHAPTER 4. ALGORITHMS

permutation perm. It uses the above helper functions to generate a sequence
prep, which empties the cache set, establishes a known logical state, triggers
permutation perm, and finally evicts a number of blocks from the set. This
sequence is used to check whether or not the new position (after triggering
the permutation) of the blockth element of the logical cache state was greater
than newPos.

In principle, one could perform a binary search of the new position, slightly
improving the algorithm’s complexity, but for simplicity we stick to the linear
algorithm as typical associativities are small.

In an ideal world, with perfect measurement ability and no interference on
the cache, the above algorithm would work. However, as discussed in Section
5.2, the measurement process itself, as well as concurrently running tasks,
can disturb the state of what is being measured. As a result, we cannot
reliably determine for a single access whether it results in a cache hit or a
miss. We thus need to increase its robustness to such disturbance in the
measurements.

4.3.3 A More Robust Implementation

The basic idea to improve robustness is to perform memory accesses in all
N cache sets instead of just one. This way, the measurement needs to dis-
tinguish between 0 or N misses rather than between 0 or 1 misses.

A simple way of realizing this is to create an interleaving of N copies of the
original access sequence, replacing every access in the original sequences by
equivalent accesses to all cache sets, e.g., 〈a, b〉 would be replaced by 〈a, a+
B, a+2·B, . . . , a+(N−1)·B, b, b+B, b+2·B, . . . , b+(N−1)·B〉. Let prep ′ and
accBlock ′ be the result of interleaving several copies of prep and accBlock ,
respectively. Then, replacing the condition measureC(prep, accBlock) = 1
by measureC(prep ′, accBlock ′) ≥ N , already yields a much more robust
algorithm.

Incidentally, the above approach also reduces the effect of hardware-based
prefetching (see Section 2.4). Prefetchers try to detect and exploit some
form of regularity in the access pattern, and may thus introduce memory
accesses that are not present in the program, as well as change the order of
memory accesses that are. Clearly such additional accesses may affect our
measurement results. The interleaving of access sequences introduced above
results in a very regular access pattern easy to correctly predict by common
prefetching mechanisms.

42

4.4. SECOND-LEVEL CACHES

As discussed in Section 5.2, starting and stopping the measurement process
between the preparatory and the measurement phase may disturb the results.
To avoid this disturbance, we replace

measureC(empty ′◦init ′◦accPerm ′◦evictk ′, accBlock ′)

by

measureC(empty ′, init ′◦accPerm ′◦evictk ′◦accBlock ′)

−measureC(empty ′, init ′◦accPerm ′◦evictk ′).

In an ideal setting, this does not change the outcome, as the execution of
empty ′ results in an empty cache, and the following execution of the sequence
init ′◦accPerm ′◦evictk ′ causes the same number of misses in both measure-
ments. The advantage is, that now, the measurement routines are called
when the cache contains data that will not be accessed in the following. The
disturbance caused by the measurement routines does not invalidate this
invariant. In addition, taking the difference between two measurements im-
mediately eliminates any constant overhead incurred by the measurements.

4.4 Second-level Caches

We assume a non-inclusive cache hierarchy, so that the second-level caches
can be analyzed independently of first-level caches. In such a cache hierarchy,
an access that misses in the first-level cache is passed to the second-level
cache.

Exclusive and strictly-inclusive caches feature more complicated interactions
between the first- and the second-level caches and would thus be more difficult
to analyze. In particular, in strictly-inclusive caches, misses in the (unified)
second-level cache that were caused by data accesses could lead to evictions in
the first-level instruction cache. Then the code of our algorithms might need
to be fetched again, which could again lead to evictions in the second-level
cache.

Further, our implementation is based on the assumption that the way size of
the second-level cache is larger than the size of the first-level cache, which is
usually the case. Then, between two accesses to the same set of the second-
level cache, our algorithms perform accesses in all cache sets of the first-level
cache. So all memory accesses lead to misses in the first-level cache and are
thus passed to the second-level cache.

43

CHAPTER 4. ALGORITHMS

44

5
Implementation

In this chapter, we describe the most important aspects of our implemen-
tation. First, we describe how cache misses can be measured. Then, we
analyze the impact of measurement errors, and present several countermea-
sures. After that, we explain how we implemented access sequences both for
data and instruction caches. Finally, we briefly describe the implementation
of our Android app.

5.1 Measuring Cache Misses

All of our algorithms use the function measureC(~p, ~m) to quantify the num-
ber of cache misses that occur when running the access sequences ~p and ~m.
There are two ways to implement this function on an actual system: one
can either use performance counters or measure the execution time. We will
explain both approaches in the following subsections. Furthermore, we will
present a way to measure cache misses when running our implementation in
the cache hierarchy simulator Cachegrind.

5.1.1 Hardware Performance Counters

Hardware performance counters are special-purpose registers that are used
to count the occurrence of various hardware-related events, including the
number of committed instructions, branch mispredictions, and the number
of hits and misses in different levels of the cache hierarchy. Performance
counters are available on many modern processors; one of the first processors
to implement them was the Intel Pentium [Spr02].

45

CHAPTER 5. IMPLEMENTATION

The “Performance Application Programming Interface” (PAPI) [M+99] pro-
vides a common interface to access these counters on a number of different
platforms, including all recent Intel and AMD x86 processors, as well as a
number of ARM, PowerPC, MIPS, Cray and UltraSparc CPUs. On recent
Linux kernels (≥ 2.6.32), PAPI can be used without an additional setup,
while older kernels require special drivers or kernel patches.

PAPI comes with two APIs to the underlying counter hardware: a simple
high-level API and a low-level API. In our implementation, we use the low-
level API because of its higher efficiency and lower overhead.

5.1.2 Measuring the Execution Time

Unfortunately, performance counters are not available on all processors. To
support as many platforms as possible, we have also implememented varia-
tions of our algorithms that measure the execution time of access sequences
instead. Since a cache miss takes more time than a cache hit, the execution
time can be used to estimate the number of hits and misses. To perform
these measurements, we use the clock_gettime function1.

However, there are a number of caveats to this approach:

• A processor might not offer a timer that is precise enough to capture
the time differences when executing very short code fragments.

• Modern CPUs feature non-blocking caches that can serve other requests
while fetching the data for a miss.

• Misses in different levels of the cache have different latencies, which
makes it challenging to analyze a specific level.

• Cache optimizations like way prediction (see Section 2.4) can influence
the execution time.

5.1.3 Simulation

When performing experiments with early versions of our algorithms, we some-
times obtained unexpected results. However, we were not sure whether these
were caused by hardware optimizations like prefetching, or whether there
was a flaw in our algorithms or implementations. One idea to analyze these

1pubs.opengroup.org/onlinepubs/9699919799/functions/clock_gettime.html

46

pubs.opengroup.org/onlinepubs/9699919799/functions/clock_gettime.html

5.2. DEALING WITH MEASUREMENT ERRORS

kinds of problems was to run our implementation using a simulator that uses
a simple memory hierarchy.

One widely used tool to simulate how a program interacts with a machine’s
cache hierarchy is Cachegrind, which is part of the Valgrind framework [NS07,
NS03]. It simulates a machine with separate first-level instruction and data
caches and a unified second-level cache.

Unfortunately, Cachegrind only outputs the number of cache misses after
running the whole program. For our algorithms, however, we need to have
access to this information at runtime. We therefore extended Cachegrind
to support this kind of access. To do this, we used Valgrind’s “trapdoor
mechanism”, which allows a program to pass requests to Cachegrind at run-
time. This is achieved by macros that insert “into the client program a
short sequence of instructions that are effectively a no-op (six highly im-
probable, value-preserving rotations of register %eax). When Valgrind spots
this sequence of instructions during x86 disassembly, the resulting translation
causes control to drop into its code for handling client requests.” [NS03]

5.2 Dealing with Measurement Errors

Unfortunately, the results of the measurements are (except for the simulation-
based approach) often not completely accurate and they usually vary from
run to run. There are a number of reasons for this behavior:

• Overhead of the measurement process itself can perturb the results.

• Concurrently running tasks can cause interference.

• The result reported by the performance counters might not represent
the actual number of cache misses that occurred, because “chip de-
signers remain reluctant to make guarantees about the accuracy of the
counts” [WD10], and “their hardware circuits are not validated like the
rest of the CPU” [U+08].

• The resolution of the clock might be too low (for the time based ap-
proach).

In the following paragraphs, we analyze the influence of the measurement
overhead and of interfering tasks. All experiments were performed on an
Intel Atom D525 (24kB 6-way associative L1 cache, 512kB 8-way associative
L2 cache, block size: 64 bytes) running Ubuntu 12.04.1.

47

CHAPTER 5. IMPLEMENTATION

0

5

10

15

20

25

30

35

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
1

0
1

1
1

1
1

2
1

1
3

1
1

4
1

1
5

1
1

6
1

1
7

1
1

8
1

1
9

1
2

0
1

2
1

1
2

2
1

2
3

1
2

4
1

2
5

1
2

6
1

2
7

1
2

8
1

2
9

1
3

0
1

3
1

1
3

2
1

3
3

1
3

4
1

3
5

1
3

6
1

3
7

1
3

8
1

3
9

1
4

0
1

4
1

1
4

2
1

4
3

1
4

4
1

4
5

1
4

6
1

4
7

1
4

8
1

4
9

1

L1 Misses L2 Misses

0

5

10

15

20

25

30

35

1

1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0

5

1
1

8

1
3

1

1
4

4

1
5

7

1
7

0

1
8

3

1
9

6

2
0

9

2
2

2

2
3

5

2
4

8

2
6

1

2
7

4

2
8

7

3
0

0

3
1

3

3
2

6

3
3

9

3
5

2

3
6

5

3
7

8

3
9

1

4
0

4

4
1

7

4
3

0

4
4

3

4
5

6

4
6

9

4
8

2

4
9

5

L1 Misses L2 Misses

0

50

100

150

200

250

300

5 6 7 8 9 10 11 15 30

L1 Misses

Frequency

0

100

200

300

400

500

600

0 4 5 18

L2 Misses

Frequency

Figure 5.1: Result of measuring an empty sequence using PAPI.

Overhead To analyze the measurement overhead, we first performed an
experiment in which we started and stopped the measurement process, with-
out executing any code in between. We repeated this experiment 500 times.

The left diagram of Figure 5.1 shows the number of cache misses for each
run; the right diagram shows how often a particular number of misses was
measured. We can see that we usually get around 8 to 10 L1 and 0 L2 misses
on most runs; on the first run, however, we get significantly more misses.
This indicates that the functions to start and stop the performance counters
access a number of memory locations; most of these seem to be cached after
the first run.

Figure 5.2 shows how this changes, if we access more than cache size many
elements before each run of the experiment, i.e. we evict all memory blocks
used by the measurement functions. Now, we get in most runs at least as
many misses as we got previously in the first run. However, we are not sure
why there are two maxima in the distribution plots at around 24 and 55 for
the L1 cache, and 17 and 43 for the L2 cache. One possible explanation could
be that, because the functions to start and stop the performance counters
need more time if there are more cache misses, it is more likely that con-
currently running processes are scheduled in between. The memory accesses
performed by these can then again lead to more cache misses of the PAPI
functions.

Figure 5.3 shows the results of performing the same experiments using the
time based approach.

Interference In this paragraph, we analyze how concurrently running tasks
affect our measurement results. Although PAPI counts cache misses on a per-
process basis, other tasks may alter the cache contents and thus increase the
number of cache misses.

48

5.2. DEALING WITH MEASUREMENT ERRORS

0

10

20

30

40

50

60

70

1

1
4

2
7

4
0

5
3

6
6

7
9

9
2

1
0

5

1
1

8

1
3

1

1
4

4

1
5

7

1
7

0

1
8

3

1
9

6

2
0

9

2
2

2

2
3

5

2
4

8

2
6

1

2
7

4

2
8

7

3
0

0

3
1

3

3
2

6

3
3

9

3
5

2

3
6

5

3
7

8

3
9

1

4
0

4

4
1

7

4
3

0

4
4

3

4
5

6

4
6

9

4
8

2

4
9

5

L1 Misses L2 Misses

0

20

40

60

80

100

120

212223242527282932343639414243444546474849505152535455565758596062636566

L1 Misses

Frequency

0

10

20

30

40

50

60

70

80

90

9 12 14 16 18 20 22 24 27 31 33 35 37 39 41 43 45 47 49 51 55 59

L2 Misses

Frequency

Figure 5.2: Result of measuring an empty sequence using PAPI (with
evicting all cache blocks before each measurement).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0

0

1
1

1

1
2

2

1
3

3

1
4

4

1
5

5

1
6

6

1
7

7

1
8

8

1
9

9

2
1

0

2
2

1

2
3

2

2
4

3

2
5

4

2
6

5

2
7

6

2
8

7

2
9

8

3
0

9

3
2

0

3
3

1

3
4

2

3
5

3

3
6

4

3
7

5

3
8

6

3
9

7

4
0

8

4
1

9

4
3

0

4
4

1

4
5

2

4
6

3

4
7

4

4
8

5

4
9

6

Time (ns) for empty sequence Time(ns) for empty sequence with eviction

Figure 5.3: Execution time for an empty sequence.

49

CHAPTER 5. IMPLEMENTATION

100

1000

10000

100000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
10

1
20

1
3
0

1
40

1
50

1
60

1
70

1
80

1
90

2
00

2
10

2
20

2
30

2
40

2
50

2
60

2
70

2
80

2
90

3
00

3
10

3
20

3
3
0

3
40

3
50

3
6
0

3
70

3
80

3
9
0

4
00

4
10

4
2
0

4
30

4
40

4
5
0

4
60

4
70

4
8
0

4
90

1x 2x 10x 100x 1000x

Figure 5.4: Cache misses when accessing all blocks in the cache n times.

0

2000

4000

6000

8000

10000

12000

14000

16000

1

2
0

3
9

5
8

7
7

9
6

1
1

5

1
34

1
53

1
72

1
91

2
1

0

2
2

9

2
4

8

2
6

7

2
8

6

3
0

5

3
2

4

3
43

3
62

3
81

4
00

4
1

9

4
3

8

4
5

7

4
7

6

4
9

5

5
1

4

5
3

3

5
52

5
71

5
90

6
09

6
2

8

6
4

7

6
6

6

6
8

5

7
0

4

7
2

3

7
4

2

7
61

7
80

7
99

8
18

8
3

7

8
5

6

8
7

5

8
9

4

9
1

3

9
3

2

9
5

1

9
70

9
89

L1 Misses Linear (L1 Misses)

Figure 5.5: Linear interpolation between the minima of the curves from
Figure 5.4.

Figure 5.4 shows the result of the following experiment (note the logarithmic
scale): We first access a memory area of cache size many bytes with a stride
of block size, i.e. every block in the cache is accessed once and should be
in the cache afterwards. Then we start the performance counters for the
L1 data cache and access the same memory area again n times, where n ∈
{1, 2, 10, 100, 1000}. A couple of things are interesting here:

• For n = 1, we get about 400 caches misses (the L1 data cache of the
Intel Atom D525 CPU has 384 blocks); for n = 2, this value does not
increase much. So it seems that starting the performance counters leads
to memory accesses in all cache sets.

• If we interpolate linearly between the minima for n = 10, n = 100, and
n = 1000 (see Figure 5.5), we can see that the slope in the two areas is
about the same (around 14). These additional misses might be caused

50

5.2. DEALING WITH MEASUREMENT ERRORS

by tasks that are scheduled periodically and that have a small memory
footprint.

• Most of the points on all curves are near the minimum of that curve.
However, sometimes a number of successive point are significantly above
that value.

A worst-case scenario for our tool would be a concurrently running program
that makes as many memory accesses as possible. Since the program we just
described makes a lot of memory accesses, especially if n is large, we decided
to perform the previous experiment again, this time with a second copy of
the program running in the background. Both processes were assigned to the
same core using the taskset command2.

Figure 5.6 shows the result of this experiment. At this scale, the curves look
rather similar to those of the previous experiment, although the maxima
are higher. If we compare the individual curves of this experiment with the
previous experiment (Figure 5.7 shows a part of both curves for n = 10), we
see that the minimum of both curves is roughly the same. However, in the
second experiment, quite a number of runs caused about 384 (i.e. the number
blocks in the cache) more misses than the minimum. This is probably caused
by interference from the concurrently running program.

Figure 5.8 and 5.9 show the result of the same experiment for the time-based
approach.

5.2.1 Countermeasures

Based on these observations, we implemented our algorithms such that we
perform all measurements repeatedly and keep only the minimum. As to
the number of repetitions necessary for a robust implementation, we found
that 10 repetitions usually provide a reasonable trade-off between run-time
and accuracy, at least for algorithms relying on big jumps. For the replace-
ment policy algorithm, higher values (e.g. 100 or 1000) might be necessary,
as this algorithm requires exact values. An alternative approach was pro-
posed by Cooper and Sandoval [CS11]: They perform measurements until
the minimum doesn’t change anymore. However, we haven’t implemented
this approach yet.

2http://linuxcommand.org/man_pages/taskset1.html

51

http://linuxcommand.org/man_pages/taskset1.html

CHAPTER 5. IMPLEMENTATION

100

1000

10000

100000

1000000

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0
1

1
1
1

1
21

1
3
1

1
41

1
5
1

1
61

1
7
1

1
81

1
9
1

2
01

2
1
1

2
21

2
3
1

2
41

2
5
1

2
61

2
7
1

2
8
1

2
9
1

3
0
1

3
1
1

3
2
1

3
3
1

3
4
1

3
5
1

3
6
1

3
7
1

3
8
1

3
9
1

4
0
1

4
1
1

4
2
1

4
31

4
4
1

4
51

4
6
1

4
71

4
8
1

4
91

1x 2x 10x 100x 1000x

Figure 5.6: Cache misses when accessing all blocks in the cache n times,
with concurrently running program.

1700

1800

1900

2000

2100

2200

2300

2400

2500

2
51

2
5

7

2
63

2
6

9

2
75

2
81

2
87

2
93

2
9

9

3
05

3
1

1

3
17

3
2

3

3
29

3
3

5

3
41

3
4

7

3
53

3
59

3
65

3
71

3
7

7

3
83

3
8

9

3
95

4
0

1

4
07

4
1

3

4
19

4
2

5

4
31

4
37

4
43

4
49

4
5

5

4
61

4
6

7

4
73

4
7

9

4
85

4
9

1

4
97

100x 100x with concurrent accesses

Figure 5.7: Cache misses when accessing all blocks in the cache 100 times,
with and without concurrently running program.

52

5.2. DEALING WITH MEASUREMENT ERRORS

1000

10000

100000

1000000

10000000

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0
1

1
1
1

1
2
1

1
3
1

1
4
1

1
5
1

1
6
1

1
7
1

1
8
1

1
9
1

2
0
1

2
1
1

2
2
1

2
3
1

2
4
1

2
5
1

2
6
1

2
7
1

2
8
1

2
9
1

3
0
1

3
1
1

3
2
1

3
3
1

3
4
1

3
5
1

3
6
1

3
7
1

3
8
1

3
9
1

4
0
1

4
1
1

4
2
1

4
3
1

4
4
1

4
5
1

4
6
1

4
7
1

4
8
1

4
9
1

1x 2x 10x 100x 1000x

Figure 5.8: Execution time for accessing all blocks in the cache n times.

1000

10000

100000

1000000

10000000

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0
0

1
0
9

1
1
8

1
2
7

1
3
6

1
4
5

1
5
4

1
6
3

1
7
2

1
8
1

1
9
0

1
9
9

2
0
8

2
1
7

2
2
6

2
3
5

2
4
4

2
5
3

2
6
2

2
7
1

2
8
0

2
8
9

2
9
8

3
0
7

3
1
6

3
2
5

3
3
4

3
4
3

3
5
2

3
6
1

3
7
0

3
7
9

3
8
8

3
9
7

4
0
6

4
1
5

4
2
4

4
3
3

4
4
2

4
5
1

4
6
0

4
6
9

4
7
8

4
8
7

4
9
6

1x 2x 10x 100x 1000x

Figure 5.9: Execution time for accessing all blocks in the cache n times,
with concurrently running program.

53

CHAPTER 5. IMPLEMENTATION

5.3 Implementing Access Sequences

As already pointed out in Section 4, we serialize memory accesses by using a
form of “pointer chasing” where each memory location contains the address
of the next access. This helps us to minimize the effects of non-blocking
caches and out-of-order execution. The following subsections explain how we
implemented this technique both for data and instruction caches.

5.3.1 Implementing Access Sequences for Data Caches

The following code snippet illustrates the basic idea of our implementation.
We assume that base is an array that contains a sequence of memory ad-
dresses, starting at the offset start.

1 register char∗ cur=(char ∗) (base+s t a r t) ;
2 while (cur !=0) {
3 cur=∗(char∗∗) cur ;
4 }

Furthermore, to minimize the effect of cache prefetching, we have imple-
mented a function to shuffle the sequences, using an “inside-out” version3 of
the Fisher-Yates shuffle, as implemented by Durstenfeld [Dur64].

5.3.2 Implementing Access Sequences for Instruction
Caches

To analyze instruction caches of x86 processors, we first allocate a large
enough memory area code and declare it executable by calling the mprotect4

function. Next, we create a list with the memory locations we want to access
in this memory area.

We have implemented a function createCodeArray that populates code with
a sequence of jump instructions to the memory locations in the list. If the
list contains the same memory location more than once, an offset is added
such that the access still maps to the same cache block. Note that this
limits the possible number of accesses to the same location. Furthermore,

3http://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_

.22inside-out.22_algorithm
4http://pubs.opengroup.org/onlinepubs/7908799/xsh/mprotect.html

54

http://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_.22inside-out.22_algorithm
http://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_.22inside-out.22_algorithm
http://pubs.opengroup.org/onlinepubs/7908799/xsh/mprotect.html

5.3. IMPLEMENTING ACCESS SEQUENCES

Listing 5.1: createCodeArray()

1 code [0]=0 x55 ; //push %rbp
2 code [1]=0 x48 ; code [2]=0 x89 ; code [3]=0 xe5 ; //mov %rsp ,%rbp
3 code [4]=0 x48 ; code [5]=0 x83 ; code [6]=0 xec ;
4 code [7]=0 x10 ; // sub $0x10 ,%rsp
5 code [8]=0 xc7 ; code [9]=0 x45 ; code [10]=0 x f c ;
6 code [11]=0 x00 ; code [12]=0 x00 ; code [13]=0 x00 ;
7 code [14]=0 x00 ; //movl $0x0 , 0 x4(%rbp)
8 code [15]=0 xeb ; code [16]=0 x0e ; //jmp 2d
9 code [17]=0 xb8 ; code [18]=0 x00 ; code [19]=0 x00 ;

10 code [20]=0 x00 ; code [21]=0 x00 ; //mov $0x0 ,%eax
11 code [22]=0 xe8 ; code [23]=0 x0f ; code [24]=0 x00 ;
12 code [25]=0 x00 ; code [26]=0 x00 ; // c a l l q code [4 2]
13 code [27]=0 x83 ; code [28]=0 x45 ; code [29]=0 x f c ;
14 code [30]=0 x01 ; // add l $0x1 , 0 x4(%rbp)
15 code [31]=0 x81 ; code [32]=0 x7d ; code [33]=0 x f c ; //cmpl
16 ∗(i n t 3 2 t ∗)(& code [34])= r ep e t i t i o n s 1 ;
17 code [38]=0 x7e ; code [39]=0 xe9 ; // j l e 1 f
18 code [40]=0 xc9 ; // l e a v e q
19 code [41]=0 xc3 ; // r e t q

Listing 5.2: Code used to obtain the machine instructions.

1 int main () {
2 int i ;
3 for (i =0; i <1000 ; i++) {
4 some funct ion () ;
5 }
6 }

createCodeArray takes a parameter repetitions that allows us to specify
how often the whole access sequence should be executed.

More precisely, createCodeArray fills code with the machine instructions
for a function call, a for-loop and the corresponding jump instructions. This
code can then be called with the statement ((void(*)(void))code)();

Listing 5.1 shows an excerpt from this function. The opcodes were ob-
tained by compiling the C-Code from Listing 5.2 with gcc, and replacing
the value of the loop boundary (here: 1000) with the value of the parame-
ter repetitions, and the call to some_function with a call to code[42].
code[42] is assumed to contain a jump to the first memory location we want
to access, and the last memory location is assumed to contain a return in-
struction such that the control flow returns to code[27] for the next iteration

55

CHAPTER 5. IMPLEMENTATION

of the loop. The code that creates the sequence of jumps is not shown here,
as it is rather lengthy because it requires a lot of bookkeeping to avoid over-
writing previous jump instructions when accessing the same location more
than once, and to compute the correct relative jump addresses.

The advantage of our approach is that this code needs to be generated only
once for every instruction set. And thus, unlike in the approach described
by [Y+06], access to the compiler is not necessary at runtime. Moreover, it
seems possible to automate the process of obtaining the opcodes for a given
instruction set.

5.4 Implementation of the Android App

Android apps are usually written in Java. However, Java does not allow
for direct memory access, which is required by our algorithms. We therefore
use the Android Native Development Kit (NDK)5, which makes it possible to
implement parts of an app using native-code languages like C and C++. The
native code can be called from Java using the Java Native Interface (JNI)6.
This technique allowed us to reuse parts of our existing implementation with
only minor changes.

All Android-based devices we could test so far come with ARM processors
that either use Pseudo Random or Pseudo Round Robin replacement
policies. Both of these policies can not be detected by our approach, and they
also complicate the inference of second-level cache parameters as it might not
be possible to ensure that all accesses lead to misses in the first-level cache.
Therefore, our app currently only infers the size, the associativity, and the
block size of first-level data caches.

5http://developer.android.com/tools/sdk/ndk/index.html
6http://docs.oracle.com/javase/6/docs/technotes/guides/jni/

56

http://developer.android.com/tools/sdk/ndk/index.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jni/

6
Experimental Evaluation

In this chapter, we evaluate our implementation experimentally. First, we
run our tools and available existing tools on a number of different x86 CPUs.
After that, we describe the most interesting results.

6.1 Evaluation of chi-PC & chi-T on Different
CPUs

The goal of this section is to run the two versions of our tool on different plat-
forms, and to compare the results with existing tools. While a number of tools
have been described in the literature (see Chapter 3), we were only able to
find a few of them online, namely lmbench [MS96], Calibrator [Man04],
RCT [CS11], and Servet [GD+10]. In addition, Keshav Pingali provided
us with a version of X-Ray [Y+04, Y+05b, Y+05c, Y+05a, Y+06]. All of
these tools use timing information to estimate the number of cache misses.

Table 6.1 shows the results of running chi-PC, chi-T and the tools mentioned
above on a number of x86 processors introduced in the last twelve years.
Empty cells in the table mean that the corresponding tool does not try
to infer this parameter. The results for instruction caches are shown in a
separate table, Table 6.2, as none of the other tools analyzes instruction
caches.

Both versions of our tool were able to successfully infer the cache parameters
on many machines; on the Intel Atom D525 processor, we discovered a pre-
viously undocumented approximation of LRU that will be described in more
detail in section 6.1.2.

However, on some machines we were not able to infer all of the parameters. In

57

CHAPTER 6. EXPERIMENTAL EVALUATION

Table 6.1: Results of running available tools on different platforms.

L1 Data L2 Unified

Architecture Tool S
iz

e
(i

n
k
B

)

A
ss

o
ci

a
ti

v
it

y

B
lo

ck
S

iz
e

(i
n

B
y
te

s)

P
o
li

cy

S
iz

e
(i

n
k
B

)

A
ss

o
ci

a
ti

v
it

y

B
lo

ck
S

iz
e

(i
n

B
y
te

s)

P
o
li

cy

Intel Pentium 3 900

Actual 16 4 32 PLRU 256 8 32 PLRU
chi-PC 16 4 32 PLRU 256 8 32 PLRU
chi-T 16 4 32 PLRU 256 8 32 PLRU2

X-Ray 16 4 32 256 4 8192
RCT 16 4 32 256 32
lmbench 16 32 256 32
Calibrator 16 32 256 32
Servet 16 256

Intel Atom D525

Actual 24 6 64 ATOM1 512 8 64 PLRU
chi-PC 24 6 64 ATOM1 512 8 64 PLRU
chi-T 24 6 64 ATOM1 512 8 64 PLRU
X-Ray 24 6 64 256 16 4096
RCT 24 6 64 256 128
lmbench 24 128 512 128
Calibrator 24 64 384 512
Servet 16 512

Intel Core 2 Quad Q9550

Actual 32 8 64 PLRU 6144 24 64 PLRU
chi-PC 32 8 64 PLRU 6144 24 64 3,4

chi-T 32 8 64 PLRU 6144 24 64 3,4

X-Ray 32 8 64 1024 4 6

RCT 32 8 64 4096 64
lmbench 32 64 6144 128
Calibrator 32 64 6144 256
Servet 16 6144

Intel Core 2 Duo E8400

Actual 32 8 64 PLRU 6144 24 64 PLRU
chi-PC 32 8 64 PLRU 6144 24 64 3,4

chi-T 32 8 64 PLRU 6144 24 64 3,4

X-Ray 64 4 4096 1024 4 6

RCT 32 8 64 4096 128
lmbench 32 64 6144 128
Calibrator 32 64 6144 128
Servet 32 6144

Intel Core 2 Duo E6750

Actual 32 8 64 PLRU 4096 16 64 PLRU
chi-PC 32 8 64 PLRU 4096 16 64 3,4

chi-T 32 8 64 PLRU 4096 16 64 3,4

X-Ray 64 4 4096 1024 4 6

RCT 32 8 64 2560 128
lmbench 32 64 4096 128
Calibrator 32 64 4096 128
Servet 32 5120

Intel Core 2 Duo E6300

Actual 32 8 64 PLRU 2048 8 64 PLRU
chi-PC 32 8 64 PLRU 2048 8 64 PLRU
chi-T 32 8 64 PLRU 2048 8 8 PLRU
X-Ray 64 4 4096 1024 4 6

RCT 32 8 64 1024 64
lmbench 32 64 2048 128
Calibrator 32 64 2048 128
Servet 32 2048

58

6.1. EVALUATION OF CHI-PC & CHI-T ON DIFFERENT CPUS

L1 Data L2 Unified

Architecture Tool S
iz

e
(i

n
k
B

)

A
ss

o
ci

a
ti

v
it

y

B
lo

ck
S

iz
e

(i
n

B
y
te

s)

P
o
li

cy

S
iz

e
(i

n
k
B

)

A
ss

o
ci

a
ti

v
it

y

B
lo

ck
S

iz
e

(i
n

B
y
te

s)

P
o
li

cy

Intel Xeon W3550

Actual 32 8 64 256 8 64 PLRU
chi-PC 32 8 64 PLRU 256 8 64 PLRU
chi-T 32 8 64 PLRU 256 8 64 PLRU
X-Ray 36 9 64 256 4 16384
RCT 32 8 64 224 64
lmbench 32 64 256 128
Calibrator 32 64 160 256
Servet 16 256

Intel Core i5 460M

Actual 32 8 64 PLRU 256 8 64 PLRU
chi-PC 32 8 64 PLRU 256 8 64 PLRU
chi-T 32 8 64 3 256 8 64 PLRU2

X-Ray 36 9 64 256 4 16384
RCT 32 8 64 224 64
lmbench 32 64 256 0
Calibrator 32 64 256 256
Servet 16 256

AMD Athlon 64 X2 4850e

Actual 64 2 64 LRU 512 16 64 PLRU
chi-PC 64 2 64 LRU 5 5 5 5

chi-T 64 2 64 LRU 5 5 5 5

X-Ray 64 2 64 728 91 64
RCT 64 2 64 384 64
lmbench 768 128 7 7

Calibrator 80 32 512 128
Servet 64 512

AMD Opteron 8360SE

Actual 64 2 64 LRU 512 16 64 PLRU
chi-PC 64 2 64 LRU 5 5 5 5

chi-T 64 2 64 LRU 5 5 5 5

X-Ray 64 2 64 6144 48 6

RCT 64 2 64 512 64
lmbench 64 64 512 64
Calibrator 64 128 512 128
Servet 64 2048

1 see section 6.1.2
2 the results were not stable, i.e., only some runs reported the correct value
3 the replacement policy could not be inferred, i.e., the result did not form a permutation
4 see section 6.1.1
5 these CPUs have exclusive L2 caches; this is currently not supported by our tools
6 ERROR: hashtable_string_integer__is_value_null(j) ./source/nbm/cache_prepare.h(300)
7 lmbench detected no L2 cache on this CPU

59

CHAPTER 6. EXPERIMENTAL EVALUATION

Table 6.2: Instruction cache results.

L1 Instruction

Architecture Tool
Size

(in kB)
Associativity

Block Size
(in Bytes)

Policy

Intel Pentium 3 900
Actual 16 4 32 PLRU
chi-PC 16 4 32 PLRU
chi-T 161 4 32 2

Intel Atom D525
Actual 32 8 64 PLRU
chi-PC 32 8 64 PLRU
chi-T 32 8 64 2

Intel Core 2 Quad Q9550
Actual 32 8 64 PLRU
chi-PC 32 8 64 PLRU
chi-T 32 8 64 2

Intel Core 2 Duo E8400
Actual 32 8 64 PLRU
chi-PC 32 8 64 PLRU
chi-T 32 8 64 2

Intel Core 2 Duo E6750
Actual 32 8 64 PLRU
chi-PC 32 8 64 PLRU
chi-T 32 8 64 2

Intel Core 2 Duo E6300
Actual 32 8 64 PLRU
chi-PC 32 8 64 PLRU
chi-T 32 8 64 2

Intel Xeon W3550
Actual 32 4 64 PLRU
chi-PC 32 4 64 2

chi-T 32 4 64 2

Intel Core i5 460M
Actual 32 4 64 PLRU
chi-PC 32 4 64 2

chi-T 32 4 64 2

AMD Athlon 64 X2 4850e
Actual 64 2 64 LRU
chi-PC 64 2 64 LRU
chi-T 64 2 64 LRU

AMD Opteron 8360SE
Actual 64 2 64 LRU
chi-PC 64 2 64 LRU
chi-T 64 2 64 LRU

1 the results were not stable, i.e., only some runs reported the correct value
2 the replacement policy could not be inferred, i.e., the result did not form a permutation

60

6.1. EVALUATION OF CHI-PC & CHI-T ON DIFFERENT CPUS

the following paragraphs, we will describe these cases more in detail, except
for the problems regarding the L2 replacement policies of several Core 2 Duo
and Core 2 Quad CPUs, which will be analyzed more thoroughly in sec-
tion 6.1.1.

AMD Athlon 64 X2 4850e and Opteron 8360SE Both AMD CPUs
have exclusive second-level caches with the same way size as their first-level
caches. Our algorithms are currently not able to infer their L2 cache param-
eters.

Intel Core i5 460M and Xeon W3550 Our implementation could not
infer the replacement policies of the instruction caches of these two Nehalem-
based processors. This might be due to the Micro-Op buffer first introduced
in this architecture1.

Time-based inference of instruction cache replacement policies Us-
ing our time-based inference algorithms, we were only able to infer the in-
struction cache replacement policies of the AMD processors we examined.
On the Intel CPUs, the reported results did not form a permutation, though
they resembled the PLRU policy in most cases. We have not been able to find
an explanation for this behavior yet. One reason might be that the individ-
ual measurements take only about 4− 10µs (on an Intel Core 2 Duo E6750),
and the expected differences between the measurements are less than 1µs.
This might be too low to get reproducible results. Another reason might be
an additional optimization technique used by Intel CPUs that we are not
aware of.

6.1.1 Core 2 Duo & Core 2 Quad Replacement Policies

The L2 replacement policy could not be inferred by our algorithm on an Intel
Core 2 Duo E6750 (4 MB, 16-way set-associative), an Intel Core 2 Duo E8400
(6 MB, 24-way set-associative), and an Intel Core 2 Quad Q9550 (6 MB,
24-way set-associative), i.e., the new positions determined by the function
newPosOfBlockInPerm did not form a permutation. However, on an Intel
Core 2 Duo E6300 (2 MB, 8-way set-associative), the PLRU replacement

1http://www.bit-tech.net/hardware/cpus/2008/11/03/

intel-core-i7-nehalem-architecture-dive/5.

61

http://www.bit-tech.net/hardware/cpus/2008/11/03/intel-core-i7-nehalem-architecture-dive/5
http://www.bit-tech.net/hardware/cpus/2008/11/03/intel-core-i7-nehalem-architecture-dive/5

CHAPTER 6. EXPERIMENTAL EVALUATION

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132333435363738394041424344454647

Core 2 Duo E6750 Core 2 Duo E8400 Core 2 Duo E6300 Core 2 Quad Q9550

Figure 6.1: Experimental analysis of L2 cache behavior of the Intel
Core 2 Duo E6750, E6300 and E8400, and Core 2 Quad Q9550.

policy was inferred. According to Intel, all of these CPUs “use some variation
of a pseudo LRU replacement algorithm” [Sin12]. To further investigate why
our algorithm could not infer the policy of the two processors mentioned
above, we designed an experiment, which:

1. Clears the L2 cache.

2. For each cache set, accesses one memory block that maps to this set.

3. Accesses n other memory blocks in each cache set.

4. Counts the L2 cache misses when accessing the memory blocks from
step 2 again.

Under the PLRU policy, and all other permutation policies, we would expect
to get zero misses if n is smaller than the associativity of the L2 cache and
number of cache sets many misses otherwise. Figure 6.1 shows that this is
indeed almost the case on the E6300. The slight jump at n = 7 is likely due to
interfering memory accesses. However, on the other two Core 2 Duo machines
and the Core 2 Quad machine, the results look different. On the E6750, the

curve can roughly be modeled by the function 4096 ·
(

1−
(

1
2

)bn/8c)
, where

4096 is the number of cache sets. So far, we have not been able to find a
conclusive explanation for this behavior.

62

6.1. EVALUATION OF CHI-PC & CHI-T ON DIFFERENT CPUS

ΠATOM
0 = (0, 1, 2, 3, 4, 5)

ΠATOM
1 = (1, 0, 2, 4, 3, 5)

ΠATOM
2 = (2, 0, 1, 5, 3, 4)

ΠATOM
3 = (3, 1, 2, 0, 4, 5)

ΠATOM
4 = (4, 0, 2, 1, 3, 5)

ΠATOM
5 = (5, 0, 1, 2, 3, 4)

Figure 6.2: Permutation vectors for Intel Atom D525.

6.1.2 Intel Atom D525 Replacement Policy

The Intel Atom D525 CPU features a 24 kB L1 data cache with associativity
6. Using our approach, we obtained the permutation vector shown in Figure
6.2 for its L1 replacement policy. We were not able to find any detailed
information about the replacement policies used in Intel Atom CPUs in the
documentation or elsewhere, so to the best of our knowledge, this is the first
publicly-available description of this policy. Obviously, the policy is not a
strict LRU policy but it seems to approximate LRU. Previously described
implementations of pseudo-LRU [AZ+04] were based on perfect binary trees
and thus required the associativity to be a power of two.

While we are not sure how this replacement policy is actually implemented,
we have figured out one possible way to implement such a policy: One can
divide the cache into three groups, with each such group holding two cache
lines. Then both the groups and the elements of the groups are managed by
LRU policies. So, upon a cache hit, the group containing the accessed element
becomes the most-recently-used group and the accessed element becomes
the most-recently-used element of this group. Upon a cache miss, the least-
recently-used element in the least-recently-used group is evicted. Figure 6.3
illustrates this approach with two example access sequences. Here, the least-
recently-used groups and elements are marked red, the most-recently-used
groups and elements green, and the remaining group gray.

Using Relacs2 [RG08], we have determined that this replacement policy is
(1, 0)-competitive relative to LRU at associativity 4. This means that all
cache analyses previously developed for LRU can be immediately applied in
WCET analyses of the Intel Atom D525.

2http://rw4.cs.uni-saarland.de/~reineke/relacs.

63

http://rw4.cs.uni-saarland.de/~reineke/relacs

CHAPTER 6. EXPERIMENTAL EVALUATION

a

a b

a b c

a d b c

a d b e c

a d b e c f

a d b e c f

a d g e c f

a d g e h f

a i g e h f

a i g j h f

a i g j h k

l i g j h k

access a

access b

access c

access d

access e

access f

access a

access g

access h

access i

access j

access k

access l

a

a b

a b c

a d b c

a d b e c

a d b e c f

a d b e c f

g d b e c f

g d h e c f

g d h e c i

g j h e c i

g j h k c i

g j h k l i

access a

access b

access c

access d

access e

access f

access c

access g

access h

access i

access j

access k

access l

Figure 6.3: Example sequences for a possible implementation of the
replacement policy used by the Intel Atom D525. The least-recently-used
elements and groups are marked red, the most-recently-used ones green.

64

6.1. EVALUATION OF CHI-PC & CHI-T ON DIFFERENT CPUS

6.1.3 Discussion

It is important to mention that we had access to most of the machines we
used for the evaluation while implementing our algorithms. Though we were
able to infer the replacement policies of most of these systems, this does not
necessarily indicate how well our implementation would perform on other
systems.

6.1.4 Experimental Setup

The experiments were performed using different versions of Linux, depend-
ing on what was already installed on the machines we examined. Aside from
enabling support for huge pages (which is required for our current implemen-
tation of the L2 replacement policy inference algorithm), we did not perform
any modifications to the operating system. In particular, we did not stop
background processes or disable interrupts, which may be useful to reduce
interference. However, our goal is for our implementation to be as robust as
possible, so that it can be easily applied in any context. To get access to
performance counters, we used PAPI in version 4.4.0. The code was compiled
with GCC at optimization level 0 to avoid compiler optimizations that could
influence the measurement results. The execution time of our algorithm was
usually less than one minute.

We used the other tools, to which we compared our implementation, in the
following versions: lmbench 3.0-a9, Calibrator 0.9e, Servet 2.0, RCT as of
June 13, 2012 and X-Ray as of October 19, 2006.

65

CHAPTER 6. EXPERIMENTAL EVALUATION

Device L1 Size L1 Associativity L1 Block Size

LG GT540 32kB 4 32 bytes
HTC Nexus One 32kB 16 32 bytes
Samsung Galaxy Nexus 32kB 4 32 bytes
Samsung GT-I9100 32kB 4 32 bytes
Samsung GT-I9300 32kB 4 32 bytes
Samsung GT-N8000 32kB 4 32 bytes
HP Touchpad 32kB 16 32 bytes

Table 6.3: Result of evaluating the Android app.

6.2 Evaluation of the Android App

Table 6.3 shows the result of evaluating our Android app on a number of
smartphones and tablets. Unfortunately, reliable and sufficiently precise doc-
umentations of the processors used in these devices are often unavailable or
hard to find. We therefore only present the values that our tool reported.

66

7
Conclusions

We developed a novel algorithm to automatically infer the replacement pol-
icy of a cache using a series of measurements. To this end, we introduced
permutation policies, a class of replacement policies that admits efficient in-
ference and includes widely used policies such as least-recently-used (LRU),
first-in first-out (FIFO), and pseudo-LRU (PLRU), in addition to a large set
of so far undocumented policies.

Our algorithm requires knowledge of a number of other cache parameters,
namely the cache size, the associativity and the block size. We designed and
improved algorithms to automatically infer these parameters as well. We
developed novel approaches for handling both physically indexed caches and
instruction caches.

Based on these algorithms, we implemented two tools, chi-PC and chi-T,
that can automatically detect the cache sizes, the associativities, the block
sizes, and the replacement policies of first- and second-level data and instruc-
tion caches. To estimate the number of cache misses, chi-PC uses hardware
performance counters, while chi-T measures the execution time. Both tools
can be run on standard Linux systems without any modifications. Further-
more, in order to extend the scope of our work to embedded processors, we
implemented an Android App that can infer the size, the associativity, and
the block size of first-level data caches.

We evaluated our approach on a number of different systems. We success-
fully determined the replacement policies on most of the evaluated systems.
On the Intel Atom D525, we discovered a—to our knowledge—previously
undocumented approximation of least-recently-used replacement.

67

CHAPTER 7. CONCLUSIONS

7.1 Future Work

The work presented in this thesis can be extended in a couple of directions.
Short-term goals include

• investigating further why the replacement policies of the Core 2 Duo
E6750 and E8400, and the Core 2 Quad Q9550 could not be detected.

• evaluating our tools on more platforms, in particular on embedded
systems.

• implementing algorithms to infer other cache parameters like the la-
tency or the write policy.

In the medium term, one could

• find a more general class of replacement policies that still admits effi-
cient inference.

• analyze trace and victim caches.

• implement algorithms to deal with strictly inclusive or exclusive caches.

• develop approaches to infer properties of other architectural features
such as TLBs, branch predictors or prefetchers.

• analyze cache coherency protocols used by shared caches in multi-core
processors.

In the long term, one could thus arrive at a tool that could automatically
detect all micro-architectural parameters necessary to build WCET analyzers
or cycle-accurate simulators.

68

Bibliography

[Ang87] D. Angluin. Learning regular sets from queries and counterex-
amples. Information and computation, 75(2):87–106, 1987.

[Ang88] D. Angluin. Queries and concept learning. Machine learning,
2(4):319–342, 1988.

[AR12] A. Abel and J. Reineke. Automatic cache modeling by mea-
surements. In 6th Junior Researcher Workshop on Real-Time
Computing (in conjunction with RTNS), November 2012.

[AR13] A. Abel and J. Reineke. Measurement-based modeling of the
cache replacement policy. In RTAS, April 2013. To appear.

[ARM10] ARM. Cortex-A9 Technical Reference Manual, 2010.

[AZ+04] H. Al-Zoubi et al. Performance evaluation of cache replacement
policies for the SPEC CPU2000 benchmark suite. In ACM-SE
42, pages 267–272, New York, NY, USA, 2004.

[BACD97] J. Bilmes, K. Asanovic, C. Chin, and J. Demmel. Optimizing
matrix multiply using PHiPAC: a portable, high-performance,
ANSI C coding methodology. In Proceedings of the 11th inter-
national conference on Supercomputing. ACM, 1997.

[BC00] J. M. Blanquer and R. C. Chalmers. MOB: A memory orga-
nization benchmark. http://www.gnu-darwin.org/www001/

ports-1.5a-CURRENT/devel/mob/work/mob-0.1.0/doc/mob.

ps, 2000.

[BT09] V. Babka and P. Tůma. Investigating cache parameters of x86
family processors. In Proceedings of the 2009 SPEC Benchmark
Workshop, pages 77–96, 2009.

[C+10] K. D. Cooper et al. The platform-aware compilation environ-
ment, preliminary design document. http://pace.rice.edu/

uploadedFiles/Publications/PACEDesignDocument.pdf,
September 2010.

[C+11] S. Cassel et al. A succinct canonical register automaton model.
In ATVA, pages 366–380, 2011.

[CD01] C. Coleman and J. Davidson. Automatic memory hierarchy char-
acterization. In ISPASS, pages 103–110, 2001.

69

http://www.gnu-darwin.org/www001/ports-1.5a-CURRENT/devel/mob/work/mob-0.1.0/doc/mob.ps
http://www.gnu-darwin.org/www001/ports-1.5a-CURRENT/devel/mob/work/mob-0.1.0/doc/mob.ps
http://www.gnu-darwin.org/www001/ports-1.5a-CURRENT/devel/mob/work/mob-0.1.0/doc/mob.ps
http://pace.rice.edu/uploadedFiles/Publications/PACEDesignDocument.pdf
http://pace.rice.edu/uploadedFiles/Publications/PACEDesignDocument.pdf

BIBLIOGRAPHY

[Cha11] V. Chandran. Robust method to determine cache and TLB char-
acteristics. Master’s thesis, The Ohio State University, 2011.

[CS11] K. Cooper and J. Sandoval. Portable techniques to find effective
memory hierarchy parameters. Technical report, Rice University,
2011.

[CWPD01] R. Clint Whaley, A. Petitet, and J. Dongarra. Automated empir-
ical optimizations of software and the ATLAS project. Parallel
Computing, 27(1):3–35, 2001.

[D+04] J. Dongarra et al. Accurate cache and TLB characterization
using hardware counters. In ICCS, pages 432–439, 2004.

[DSGP08] A. Duchateau, A. Sidelnik, M. Garzarán, and D. Padua. P-ray: A
suite of micro-benchmarks for multi-core architectures. In Proc.
21st Intl. Workshop on Languages and Compilers for Parallel
Computing (LCPC’08), volume 5335, pages 187–201, 2008.

[Dur64] R. Durstenfeld. Algorithm 235: Random permutation. Commun.
ACM, 7(7):420–, July 1964.

[FH04] C. Ferdinand and R. Heckmann. aiT: Worst-case execution time
prediction by static program analysis. Building the Information
Society, pages 377–383, 2004.

[FJ94] K. Farkas and N. Jouppi. Complexity/performance tradeoffs with
non-blocking loads, volume 22. IEEE Computer Society Press,
1994.

[FJ05] M. Frigo and S. Johnson. The design and implementation of
FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005.

[GD+10] J. González-Domı́nguez et al. Servet: A benchmark suite for
autotuning on multicore clusters. In IPDPS, pages 1–9. IEEE,
2010.

[GLYY12] N. Guan, M. Lv, W. Yi, and G. Yu. WCET analysis with
MRU caches: Challenging LRU for predictability. In Real-Time
and Embedded Technology and Applications Symposium (RTAS),
2012 IEEE 18th, pages 55–64. IEEE, 2012.

[Gru12] D. Grund. Static Cache Analysis for Real-Time Systems – LRU,
FIFO, PLRU. PhD thesis, Saarland University, 2012.

[H+12] F. Howar et al. Inferring canonical register automata. In VMCAI,
pages 251–266, 2012.

70

BIBLIOGRAPHY

[HP11a] D. Hardy and I. Puaut. WCET analysis of instruction cache hi-
erarchies. Journal of Systems Architecture, 57(7):677–694, 2011.

[HP11b] J. L. Hennessy and D. A. Patterson. Computer Architecture,
Fifth Edition: A Quantitative Approach. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 5th edition, 2011.

[HSU+01] G. Hinton, D. Sager, M. Upton, D. Boggs, et al. The microarchi-
tecture of the Pentium R© 4 processor. Intel Technology Journal,
1:2001, 2001.

[Int12a] Intel Corporation. Intel R© 64 and IA-32 Architectures Optimiza-
tion Reference Manual. Number 248966-026. April 2012.

[Int12b] Intel Corporation. Intel R© Processor Identification and the
CPUID Instruction. Application Note 485. May 2012.

[JB07] T. John and R. Baumgartl. Exact cache characterization by ex-
perimental parameter extraction. In RTNS, pages 65–74, Nancy,
France, 2007.

[LGBT05] C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari. Bridging the
processor-memory performance gap with 3D IC technology. De-
sign & Test of Computers, IEEE, 22(6):556–564, 2005.

[LT98] E. Li and C. Thomborson. Data cache parameter measurements.
In Computer Design, International Conference on, page 376, Los
Alamitos, CA, USA, 1998. IEEE.

[M+99] P. J. Mucci et al. PAPI: A portable interface to hardware per-
formance counters. In Proceedings of the DoD HPCMP Users
Group Conference, pages 7–10, 1999.

[Man04] S. Manegold. The calibrator (v0.9e), a cache-memory and
TLB calibration tool. http://homepages.cwi.nl/~manegold/

Calibrator/, June 2004.

[MS96] L. McVoy and C. Staelin. lmbench: portable tools for perfor-
mance analysis. In USENIX Annual Technical Conference, pages
23–23, Berkeley, CA, USA, 1996.

[NS03] N. Nethercote and J. Seward. Valgrind: A program supervi-
sion framework. Electronic notes in theoretical computer science,
89(2):44–66, 2003.

71

http://homepages.cwi.nl/~manegold/Calibrator/
http://homepages.cwi.nl/~manegold/Calibrator/

BIBLIOGRAPHY

[NS07] N. Nethercote and J. Seward. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. ACM Sigplan Notices,
42(6):89–100, 2007.

[Rei08] J. Reineke. Caches in WCET Analysis. PhD thesis, Universität
des Saarlandes, November 2008.

[RG08] J. Reineke and D. Grund. Relative competitive analysis of cache
replacement policies. In LCTES, pages 51–60, New York, NY,
USA, 2008. ACM.

[S+04] T. S. B. Sudarshan et al. Highly efficient LRU implementations
for high associativity cache memory. In ADCOM, pages 87–95,
Ahmedabad, India, 2004.

[SCW+02] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and
A. Purkayastha. A framework for performance modeling and
prediction. In Supercomputing, ACM/IEEE 2002 Conference,
pages 21–21. IEEE, 2002.

[Sin12] R. Singhal. Personal communication, August 2012.

[Spr02] B. Sprunt. The basics of performance-monitoring hardware. Mi-
cro, IEEE, 22(4):64 – 71, jul/aug 2002.

[SS95] A. J. Smith and R. H. Saavedra. Measuring cache and TLB per-
formance and their effect on benchmark runtimes. IEEE Trans.
Comput., 44(10):1223–1235, October 1995.

[TY00] C. Thomborson and Y. Yu. Measuring data cache and TLB pa-
rameters under Linux. In Proceedings of the Symposium on Per-
formance Evaluation of Computer and Telecommunication Sys-
tems, pages 383–390, July 2000.

[U+08] L. Uhsadel et al. Exploiting hardware performance counters. In
FDTC, pages 59–67, 2008.

[UM09] V. Uzelac and A. Milenkovic. Experiment flows and microbench-
marks for reverse engineering of branch predictor structures. In
ISPASS, pages 207–217. IEEE, 2009.

[W+10] H. Wong et al. Demystifying GPU microarchitecture through
microbenchmarking. In ISPASS, pages 235–246, 2010.

72

BIBLIOGRAPHY

[WD10] V. Weaver and J. Dongarra. Can hardware performance coun-
ters produce expected, deterministic results. In 3rd Workshop
on Functionality of Hardware Performance Monitoring, Atlanta,
GA (December 4, 2010), 2010.

[Y+04] K. Yotov et al. X-ray: Automatic measurement of hardware
parameters. 2004.

[Y+05a] K. Yotov et al. Automatic measurement of hardware parameters
for embedded processors. 2005.

[Y+05b] K. Yotov et al. Automatic measurement of memory hierarchy
parameters. In SIGMETRICS, pages 181–192, New York, NY,
USA, 2005. ACM.

[Y+05c] K. Yotov et al. X-ray: A tool for automatic measurement of
hardware parameters. In QEST, pages 168–177, Washington,
DC, USA, 2005. IEEE.

[Y+06] K. Yotov et al. Automatic measurement of instruction cache
capacity. In LCPC, pages 230–243. Springer-Verlag, 2006.

[You07] M. T. Yourst. PTLsim: A cycle accurate full system x86-64
microarchitectural simulator. In ISPASS, pages 23–34, 2007.

[ZV04] C. Zhang and F. Vahid. Using a victim buffer in an application-
specific memory hierarchy. In Design, Automation and Test in
Europe Conference and Exhibition, 2004. Proceedings, volume 1,
pages 220–225. IEEE, 2004.

73

List of Figures

2.1 Example of a memory hierarchy. (taken from [HP11b]) 5
2.2 Parameters and basic domains. 6
2.3 Logical organization of a k-way set-associative cache. (taken

from [Rei08]) . 7
2.4 Permutation vectors for LRU, PLRU & FIFO 13

4.1 Result of running the simple algorithm for determining the
cache size. 29

4.2 Result of running the simple algorithm with pointer chasing. . 29
4.3 Result of running the simple algorithm for the associativity

without pointer chasing. 31
4.4 Result of running the simple algorithm for the associativity

with pointer chasing. 31
4.5 Result of running Algorithm 3 33

5.1 Result of measuring an empty sequence using PAPI. 48
5.2 Result of measuring an empty sequence using PAPI (with

evicting all cache blocks before each measurement). 49
5.3 Execution time for an empty sequence. 49
5.4 Cache misses when accessing all blocks in the cache n times. . 50
5.5 Linear interpolation between the minima of the curves from

Figure 5.4. 50
5.6 Cache misses when accessing all blocks in the cache n times,

with concurrently running program. 52
5.7 Cache misses when accessing all blocks in the cache 100 times,

with and without concurrently running program. 52
5.8 Execution time for accessing all blocks in the cache n times. . 53
5.9 Execution time for accessing all blocks in the cache n times,

with concurrently running program. 53

6.1 Experimental analysis of L2 cache behavior of the Intel Core 2 Duo
E6750, E6300 and E8400, and Core 2 Quad Q9550. 62

6.2 Permutation vectors for Intel Atom D525. 63
6.3 Example sequences for a possible implementation of the re-

placement policy used by the Intel Atom D525. 64

List of Tables

6.1 Results of running available tools on different platforms. . . . 58
6.2 Instruction cache results. 60
6.3 Result of evaluating the Android app. 66

75

List of Algorithms

1 Cache Size (Simple Algorithm) 28
2 Associativity (Simple Algorithm) 30
3 Cache Size/Associativity . 31
4 Cache Size/Associativity (Supporting Physically Indexed Caches) 34
5 Helper Functions for Algorithm 4 35
6 Block Size (Simple Algorithm) 38
7 Block Size . 38
8 Naive Implementation of the Replacement Policy Inference Al-

gorithm. 40

	Introduction
	Outline

	Caches
	Cache Organization
	Formalization and a Cache Template
	What Can Be Measured?
	What Can Be Inferred?

	Replacement Policies
	Permutation Policies
	Logical Cache Set States

	Cache Optimizations

	Related Work
	Measurement of Cache Hierarchy Parameters
	Machine Learning

	Algorithms
	Cache Size/Associativity
	Simple Algorithms
	A More Robust Algorithm
	An Algorithm Supporting Physically Indexed Caches

	Block Size
	Replacement Policy
	Intuitive Description of Algorithm
	A Naive Implementation
	A More Robust Implementation

	Second-level Caches

	Implementation
	Measuring Cache Misses
	Hardware Performance Counters
	Measuring the Execution Time
	Simulation

	Dealing with Measurement Errors
	Countermeasures

	Implementing Access Sequences
	Implementing Access Sequences for Data Caches
	Implementing Access Sequences for Instruction Caches

	Implementation of the Android App

	Experimental Evaluation
	Evaluation of chi-PC & chi-T on Different CPUs
	Core 2 Duo & Core 2 Quad Replacement Policies
	Intel Atom D525 Replacement Policy
	Discussion
	Experimental Setup

	Evaluation of the Android App

	Conclusions
	Future Work

