
 
 

 

ABSTRACT 
Virtualization is an essential technology in modern datacenters. 

Despite advantages such as security isolation, fault isolation, and 
environment isolation, current virtualization techniques do not 
provide effective performance isolation between virtual machines 
(VMs). Specifically, hidden contention for physical resources im-
pacts performance differently in different workload configurations, 
causing significant variance in observed system throughput. To this 
end, characterizing workloads that generate performance inter-
ference is important in order to maximize overall utility. 

In this paper, we study the effects of performance interference 
by looking at system-level workload characteristics. In a physical 
host, we allocate two VMs, each of which runs a sample application 
chosen from a wide range of benchmark and real-world workloads. 
For each combination, we collect performance metrics and runtime 
characteristics using an instrumented Xen hypervisor. Through 
subsequent analysis of collected data, we identify clusters of ap-
plications that generate certain types of performance interference. 
Furthermore, we develop mathematical models to predict the per-
formance of a new application from its workload characteristics. 
Our evaluation shows our techniques were able to predict per-
formance with average error of approximately 5%. 
 
1. INTRODUCTION 

Virtualization technology [1][24][25] offers many ad-
vantages to datacenter administrators and end users. By run-
ning multiple virtual machines (VMs) in a shared physical 
machine, virtualization enables high utilization of hardware 
resources. Live migration and easy restart of VMs improve 
manageability of large datacenters. Meanwhile, virtual ma-
chine technology provides strong isolation among virtual 
domains. For example, security isolation prevents a mali-
cious application from attacking applications or accessing 
data in other domains. Fault isolation prevents one misbe-
having application from bringing down the whole system. 
Environment isolation allows multiple operating systems to 
run on the same machine, accommodating legacy applica-
tions and cutting-edge software, each with a separate set of 
configurations and parameters. 
 
 

∗ Most of this work was done while Koh and Wen were interns at Intel 
Corporation in the summer of 2006. 

 

Despite such advantages, we have observed that modern 
virtual machine technologies do not provide effective per-
formance isolation. While the hypervisor (a.k.a. the virtual 
machine monitor) slices resources and allocates shares to 
different VMs, the behavior of one VM can still affect the 
performance of another adversely due to the shared use of 
resources in the system. Furthermore, the isolation provided 
by virtualization limits the visibility of an application in a 
VM into the cause of performance anomalies that occur in a 
virtualized environment. Specifically, a user running the 
same virtual machine on the same hardware at different times 
will see wide disparity in performance based on the work 
performed by other VMs on that physical host. We use the 
term performance interference to describe this phenomenon. 

The performance interference in virtual environments 
differs from one in a traditional operating system in a few 
important aspects. First, multiple VMs on a hypervisor con-
tain several independent resource schedulers, each of which 
is attempting to manage shared resources without visibility of 
the others. Therefore, the system suffers from non-obvious 
interference that underlies the OS and is outside the control 
of an OS or the hypervisor. Second, the guest OSes and ap-
plications inside a VM cannot – by the nature of isolation – 
be fully informed about other work in another domain, and 
therefore cannot deterministically measure the effects of 
performance interference. Moreover, while an OS can easily 
access detailed information of applications it runs, the hy-
pervisor has very low visibility1 into both the guest OS and 
its applications. Because of this, many of the possible 
state-of-the-art optimization techniques are difficult for the 
hypervisor to implement. Finally, some hypervisors insert 
another layer of abstraction by offloading certain operations 
such as I/O operations to service VMs. This additional redi-
rection created by the hypervisor layer particularly affects the 
performance of I/O-intensive applications; for example, 
since the Xen hypervisor forces all the I/O operations from 
guest OSes to pass through a special device driver domain, 
the context-switches into and out of a device driver domain 
 
 

1 Indeed, this opacity is often regarded as a feature, allowing the hyper-
visor to be less complex and therefore easier to optimize and debug. 
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result in a dimension of performance interference unique to 
virtualization. 

In this paper, we study performance interference among 
the selected applications in our experimental virtual envi-
ronments. By analyzing the system-level characteristics 
collected from the virtual environments, we have observed 
that a significant degree of performance interference exists 
when we run certain types of applications on shared hardware 
at the same time. To understand the performance behaviors 
of applications under performance interference, we classify 
applications using different metrics. Furthermore, we de-
velop mechanisms to predict the expected performance 
scores of the applications running different types of work-
loads. Our mechanisms were able to predict scores with 
average error of approximately 5%.  

The paper is organized as follows. Section 2 presents our 
experimental setup. Section 3 shows initial performance 
results to motivate our problems. In section 4, we identify 
performance interference by characterizing workloads. Sec-
tion 5 introduces and evaluates our performance prediction 
mechanisms. We discuss the usefulness of our work and 
related work in section 6 and section 7. We conclude with 
summary and future work in section 8. 

2. EXPERIMENTAL SETUP 
2.1.Virtual Resource Allocation Environments 

For our study of performance interference, we developed 
an experimental virtual resource allocation (VRA) environ-
ment. In this environment, we can remotely create numerous 
virtual machines with different resource specifications in 
different physical hosts. In each VM, we run a wide range of 
different applications to gain actual data for our analysis. The 
applications we use for our experiments are chosen from 
real-world workloads, such as compression, the compilation 
of source code, and rendering frames, as well as from 
well-known benchmark suites, such as the SPEC2000 CPU 
benchmark [23] and lmbench benchmark suite [21]. 

In this study, two VMs are created in a physical host, 
using the Xen hypervisor [1][25]. Each VM domain (“dom1” 
and “dom2”, respectively) runs one of our VRA applications. 
Notationally, the application running in dom1 is called the 
“foreground” application, and the one in dom2 is the “back-
ground” application. A foreground application F running 
against background application B is denoted as F@B. Be-
cause the running time of each application varies, we ensure 
the background applications stay active by restarting them if 
needed in dom2 while foreground applications complete. We 
run the applications in a way that every application runs both 
as foreground and background, so as to construct an n x n 
matrix, containing all the possible combinations of meas-
urement results. 

For a hypervisor scheduler, we used the Borrowed Virtual 
Time scheduler (BVT) [5], which is one of the mature Xen 
hypervisor schedulers currently available. 
2.2.VRA Applications 

We carefully choose our test applications to stress various 
aspects of the system and hardware. 

Add_double is a sub-benchmark program from the AIM 

benchmark suite [17]. Add_double measures the performance 
of double precision adding operations. Analyser is a bench-
mark program from the Freebench benchmark suite [19]. 
Analyzer’s performance is limited by the memory subsystem. 
Bzip2 and gzip are popular compression applications. They 
are also included in the SPEC CPU2000 benchmark suite 
[23]. We run bzip2 and gzip for compressing text files with 
the –best option. Ccrypt is a popular open-source encryp-
tion and decryption tool, and we encrypt a variety of text files 
in our experiment. For compression and encryption applica-
tions, we use files sufficiently large so as not to fit in the file 
cache of the guest operating systems. 

Cachebench [18] is an open-source benchmark program 
that determines the performance of a memory subsystem. We 
wrote a program (cachebuster) that invalidates the cache 
content quickly by striding memory address space by the 
cache line size of the underlying physical processor.  Cat and 
grep are popular Linux tools that generate a lot of disk read 
requests; we use large text files as input for these experiments. 
We also use cp and dd to generate disk write activity, copying 
small files into a complicated directory structure.  Iozone [20] 
is another disk I/O benchmark suite, providing varied read 
and write tests.  Bw_mem is a memory benchmark program 
included in the lmbench benchmark suite [21]. 

We also measure the performance of building a source 
code package, specifically a recent version of the Apache 
web server [16]; this test is referred to simply as make. 
Povray [22] is a frame rendering tool for 3-D graphics. Fi-
nally, we wrote a very simple program named spinlock that 
loops infinitely, consuming almost nothing but CPU cycles. 

Some of the VRA applications produce explicit per-
formance scores. For the rest of the applications, we regard 
the inverse of the elapsed time of one run as its performance 
score. We summarize our applications in Table 2-1. 

Table 2-1 VRA Test Applications 

Name Major re-
source used Performance measurement 

Add_double CPU Score 
Analyser Memory Elapsed time 
Bw_mem Memory Score 
Bzip2 Mixed Elapsed time 
Cat Disk Elapsed time 
Cachebench Memory Score 
Cachebuster Memory Elapsed time 
Ccrypt Mixed Elapsed time 
Cp Disk Elapsed time 
Dd Disk Elapsed time 
Grep Disk Elapsed time 
Gzip Mixed Elapsed time 
Iozone Disk Score 
Make Mixed Elapsed time 
Povray Mixed Elapsed time 
Spinlock CPU Elapsed time 

2.3.Normalized Performance Score 
Since we are interested in finding out the extent to which 

performance is affected by interference generated by an 
application running in the other domain, we use degradation 
from standard performance as a normalized score. To cal-
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culate normalized scores of an application, first we define 
idle performance scores as the scores of applications when 
they are running against an idle domain2. Then, we calculate 
a normalized score of application F running against B, di-
viding the score of F by its idle performance score. Thus, we 
have NS(F@B), a normalized score of F against B,   

 

  )@(/)@()@( IdleFrePerformScoBFrePerformScoBFNS =  
 

Since we are interested the overall performance of ap-
plications, we define NS (F+B), combined performance of 
two applications, F and B, in each domain,  

 

  )@()@()( FBNSBFNSBFNS +=+  
 

NS(F@B) and NS(B@F) are measured in two separate 
experiments. 

3. PERFORMANCE INTERFERENCE 
We present combined performance results for sample 

applications in Figure 3-1. Note that the performance scores 
are normalized. Thus, any application running standalone has 
normalized performance of 1, as in bzip2. Ideally, the ex-
pected combined performance is 1, assuming each applica-
tion uses exactly half resources in the system. The dashed 
line in the graph represents the ideal expected performance. 
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Figure 3-1 Varying performance with different combinations of 

applications 

We notice, however, that combined performance varies 
substantially with different combinations of applications. 
Applications that rarely interfere with each other achieve 
performance close to the standalone performance, resulting 
in combined performance close to 2, as in grep+povray. 
However, some combinations interfere with each other in an 
adverse way, and their combined performance drops sig-
nificantly – for example, down to 0.35, as in grep+grep. 

The performance interference we observe here derives 
from state in the shared physical resources between VMs. For 
example, if an application runs in a VM by itself, it can use 
techniques to warm the cache(s) and take advantage of this 
faster memory for improved performance. However, when 
the hypervisor switches to another VM (e.g. at the end of 
each quantum), the new VM gains access to the cache(s). 
Consequently, when the original VM regains access to the 
cache, there is high probability that the cache is at least par-
 
 

2 This allows us to eliminate the virtualization overhead, the optimization 
of which is a separate matter. 

tially cold. Worse yet, because the hypervisor is opaque in its 
representation of physical hardware, the application and the 
guest OS are not aware of these changes, which makes it 
difficult to apply traditional optimization techniques. 

Other resources that provide some amount of state in-
clude disk storage. For example, a streaming read will be 
interrupted by any disk access that another VM does. While 
techniques such as anticipatory scheduling in the hypervisor 
[9] helps reduce overhead in certain cases, this interference 
can have a significant effect on performance, depending on 
the access pattern of each VM, the time quantum of the hy-
pervisor, and the nature of the storage system.  

4. ANALYSIS OF PERFORMANCE INTERFERENCE 
4.1.System-level Workload Characteristics 

To capture VM behaviors that generate performance in-
terference, we collect system-level workload characteristics 
through an instrumented hypervisor as described earlier. We 
decide to collect system-level characteristics for workload 
characterization in two reasons. First, these characteristics 
are independent of the underlying micro-architecture, so we 
can draw comparisons across physical hosts of different 
types. Second, by measuring characteristics from outside of 
the VM environment, we eliminate the needs of simulation or 
re-compilation of applications or modification of the guest 
OS. 

In our experimental setup, we collected the following 10 
different workload characteristics per each VM: 

Average CPU utilization (cpuutil). We derive av-
erage CPU utilization by dividing cputime used for a VM by 
the elapsed (wall-clock) time of the VM. Cputime is col-
lected by the hypervisor. 

Cache hits and misses per second (cachehits, 
cachemisses). Cache behavior is an important metric to 
understand the memory usage of a VM.  Our instrumented 
hypervisor provides us with cache hit and miss numbers from 
counters in the processor. 

Virtual machine switches per second (vmswitches, 
novmswitches). We measure how many times the hy-
pervisor switches control to a different VM (vmswitches) 
or returns to the same VM (novmswitches).  

I/O blocks per second (blocks). We also measure how 
many times a VM is blocked due to I/O waiting, when it 
relinquishes the remainder of its quantum to the hypervisor.  

Disk reads and writes issued per second 
(reads_issued, writes_issued). Disk reading and 
writing time per VM (time_reading, 
time_writing). The numbers of read and write requests 
issued to (virtual) disk device drivers and the time spent for 
the requests are good indicators of I/O.  
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Table 4-1 System-level characteristics of benchmark applications against idle 

 cpuutil cachehits (K) cachemisses (K) vmswitches novmswitches 
add_double 1.00 310.31 8.74 63.87 58.66 
analyser 1.00 42299.19 7821.22 61.00 59.97 
bzip2 0.96 46008.36 3581.26 96.77 56.31 
cachebench 1.00 144327.44 1683.38 55.94 62.20 
cachebuster 1.01 17531.42 17242.03 71.70 59.12 
cat 0.22 12790.63 502.35 619.39 2.08 
ccrypt 0.96 13809.18 359.98 327.10 3.48 
cp 0.84 59524.61 2343.92 511.30 47.36 
dd 0.82 54976.78 2152.38 571.84 45.59 
grep 0.02 1753.52 47.37 403.74 0.00 
gzip 0.98 142100.17 228.14 176.39 28.16 
iozone 0.11 8631.83 798.31 1607.07 0.59 
bw_mem 1.01 10107.07 51040.85 81.93 70.71 
make 0.98 92662.22 1567.48 94.36 59.86 
povray 1.00 59365.30 5.88 58.48 60.65 
spinlock 1.00 276.02 10.86 61.28 61.93 
 reads_issued time_reading writes_issued time_writing blocks 
add_double 0.67 2.66 3.68 21.62 2.31 
analyser 1.29 2.57 1.03 0.43 1.78 
bzip2 83.32 252.42 0.57 0.27 11.65 
cachebench 0.22 1.60 0.34 0.16 0.58 
cachebuster 1.07 4.11 0.74 0.00 6.66 
cat 186.02 791.79 1.76 25.09 266.69 
ccrypt 475.42 997.34 1.31 26.62 4.22 
cp 15.02 37.49 711.79 8628.56 271.48 
dd 15.92 37.87 750.01 9263.64 325.66 
grep 292.65 978.97 3.23 57.51 401.60 
gzip 201.77 314.82 0.83 0.65 1.61 
iozone 631.20 2436.34 1192.50 16369.25 1581.08 
bw_mem 1.46 9.75 2.44 0.00 14.87 
make 10.10 32.55 24.64 83.32 16.09 
povray 0.36 1.60 0.60 0.00 0.57 
spinlock 0.24 1.19 0.54 0.00 3.33 
      

In Table 4-1, we show workload characteristics of our 
benchmark applications running against an idle domain. 
Notice that CPU- and memory-intensive applications have 
high average CPU utilization, while I/O-intensive applica-
tions do not fully consume their assigned CPU quanta. Some 
real-world applications, such as bzip2 and make, have high 
I/O indicators, since they read input files from disk. Mem-
ory-intensive benchmark programs show high cache num-
bers, particularly high miss numbers. Compression applica-
tions have relatively high cachehits but low cachemisses, 
which implies that they frequently access a small working set 
of memory (and are likely tuned for performance in this 
way). 

4.2.Performance against Different Workloads 
As described earlier, the performance score of each ap-

plication varies depending on the type of application running 
in the other domain. We show our measured performance 
scores of benchmark applications in Figure 4-1.  

Ideally, since we run two VMs in a physical host, the 

expected performance score of each application is 0.5, on the 
assumption that each application makes use of exactly half of 
resources in real hardware. However, we notice that per-
formance scores of applications are greatly affected by 
background applications. grep has the largest variance for 
performance scores among the test applications, while dd has 
the least. Meanwhile, iozone as a background application 
gives the most diverse performance scores for foreground 
applications, cp as a background does the least. Note that the 
normalized performance of all the applications against an 
idle domain is 1. 
4.2.1. Cache Interference 

Cachebuster is a program of our own design that invali-
dates processor cache quickly, walking the address space by 
striding by the cache-line size of the underlying physical 
processor. Against cachebuster, some of the applications, 
particularly memory-intensive ones, such as cachebench, 
cachebuster, and analyser, suffer from significant perform-
ance interference. 
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Figure 4-1 Performance score variations for selected foreground and background workloads 

Table 4-2 shows workload characteristics of analyser and 
cachebuster when they are running against each other. Note 
that both programs use CPU quanta evenly. Because analyser 
is now scheduled for half of the time, one would naïvely 
expect to see analyser having half cache hit and miss num-
bers of the idle case, that is, 42299.19 / 2 = 21149.60 and 
7821.22 / 2 = 3910.6. However, with cachebuster in dom2, 
analyser’s measured characteristics show lower cache hits 
and higher misses than expected numbers. This 20-30% 
difference of cache behavior is reflected in the performance, 
since the performance of analyser@cachebuster is 0.39, 
which is 20% less than the anticipated performance of 0.5. 

Table 4-2 Workload characteristics of analyser@cachebuster 
domain Dom1 Dom2 

workload analyser cachebuster 
cpuutil 0.50 0.50 

cachehits(K) 15162.8 5243.3 
cachemisses(K) 4970.7 9746.2 

vmswitches 484.2 486.6 
novmswitches 23.6 23.7 
reads_issued 0.5 0.0 
time_reading 1.4 0.0 
writes_issued 0.4 0.0 
time_writing 0.3 0.0 

blocks 0.7 0.0 

4.2.2. I/O Interference 
Grep and cat have unique performance patterns com-

pared with most of other applications. While they perform 
relatively well against CPU- and memory-intensive applica-
tions, their performance drops significantly against applica-
tions such as ccrypt and gzip (including themselves). Note 
that grep and cat have high numbers for I/O characteristics. 
The applications that significantly affect the performance of 
grep and cat also have relatively high I/O characteristic 
numbers in Table 4-1. Our results indicate that there is a 
significant degree of performance interference between 
I/O-intensive applications. We show the workload charac-
teristics of cat@grep in Table 4-3, to see how workload 
characteristics change depending on the background inter-
ference.  

Table 4-3 Workload characteristics of cat@grep 
domain Dom1 Dom2 

workload cat grep 
cpuutil 0.06 0.01 

cachehits(K) 3547.6 435.2 
cachemisses(K) 197.1 60.0 

vmswitches 252.0 154.0 
novmswitches 0.0 0.0 
reads_issued 51.2 48.9 
time_reading 952.7 993.5 
writes_issued 0.8 1.1 
time_writing 16.3 24.3 

blocks 149.3 151.1 

Note that cat’s reads_issued numbers are significantly 
reduced (from 186.0 to 51.2), compared with the idle case. 
Meanwhile, the time_reading increased from 791.8 to 952.7. 
This indicates that cat is spending more time for fewer 
numbers of disk reading operations. Cat suffers from this 
inefficiency, resulting in a poor normalized score, 0.28. On 
the contrary, CPU utilization of cat becomes even smaller 
due to increased I/O waiting time. Therefore, CPU-intensive 
programs against cat are able to achieve better performance.  
4.3.Application Clustering 

With our findings about performance interference, we 
explore application clustering according to their measured 
characteristics. The application clusters would be useful for 
predicting performance of a new application since we can 
predict its performance by looking at performance of another 
application in the same cluster. 
4.3.1. Clustering applications using performance 
scores and workload characteristics 

For further analysis, we ran a hierarchical clustering al-
gorithm using each application’s performance score vector3, 
which consists of normalized performance scores of an ap-
plication against all the background applications. The resul-
 
 

3 We used R (http://www.r-project.org), a free software tool for 
statistical computing, for our analysis and statistical modeling in 
section 4 and section 5. 
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tant dendrogram is presented in Figure 4-2. The height of the 
graph represents the distance between clusters; applications 
can be grouped into clusters based on the tree structure that 
comes from the analysis. 

 
Figure 4-2 Workload clustering using scores 

 
Figure 4-3 Workload clustering using system-level characteristics

The clustering dendrogram confirms the performance 
score graph shown earlier. Cat and grep have similar per-
formance patterns; while iozone and ccrypt have their own 
performance curve, and all others follow a similar pattern. 

In order to investigate the relationship between per-
formance score and workload characteristics, we ran a hier-
archical clustering algorithm with just our system-level 
characteristics. Because we have 10 characteristic variables, 
each application has a characteristic signature vector of 
length of 10 * 16 (the number of the background workloads).  
Since each workload characteristic has a different range, we 
scaled each variable v such that 0 ≤ v ≤ 1.  

Figure 4-3 shows the results for clustering using system 
level characteristics, which shows significant differences 
compared with Figure 4-2. We had expected to see similar 
clustering results, on the assumption that the shape of work-
load characteristics will have the most direct impact on the 
performance. One possible explanation for these results is 
that we gave all the characteristics equal weight. Since cor-
relation of some workload characteristics with the perform-
ance is stronger than others, we decided to apply a weighted 
clustering algorithm. 
4.3.2. Weighted Clustering  

From Figure 4-2, we learned that large numbers of the 
applications, add_double, analyser, bw_mem, bzip2, cp, dd, 
gzip, cachebench, cachebuster, make, povray, and spinlock, 
have similar performance patterns. We propose that the 

characteristic variables changing less among those applica-
tions should have greater impact on the performance. In order 
to measure the rate of change, we calculate the standard 
deviation divided by the mean (coefficient of variation) for 
each characteristic variable.  
Table 4-4 coefficient of variation for each characteristic vari-

able for chosen applications 
x stddev(x)/mean(x) 

cpuutil 0.28 
cachehits(K) 0.96 

cachemisses(K) 1.89 
vmswitches 0.27 

novmswitches 0.70 
reads_issued 2.18 
time_reading 3.53 
writes_issued 2.28 
time_writing 2.45 

blocks 2.35 

Table 4-4 shows the calculated values for each variable. 
From the table, we notice CPU utilization and virtual ma-
chine switching numbers stay relatively stable. This implies 
they are more important factors to determine the performance 
of applications. To reflect this, we take the inverse of a cal-
culated value to get a weight for each variable. After multi-
plying weights by each corresponding column in our matrix, 
we get the following clustering dendrogram (Figure 4-4). We 
can see that weighted clustering gives us clustering results 
significantly closer to the performance score clusters. 

 
Figure 4-4 Weighted workload clustering with system-level 

characteristics 
Because of this similarity, and its correspondence with 

intuition, we believe that weighting characteristics based on 
the variability of known workloads improves the clustering, 
and provides a basis from which to further research which 
characteristics have what significance for this purpose. Our 
future work will include isolating the particularly important 
characteristics, and determining which other characteristics 
our system (in its instrumented hypervisor and elsewhere in 
the platform) can produce. 

5. APPLICATION PERFORMANCE PREDICTION  
In section 4, we learned that certain types of applications 

can generate significant performance interference and 
showed application clusters according to them. While clus-
tering helped us understand the relations between applica-
tions, however, clustering results alone were not enough for 
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us to predict the performance score of new applications, since 
majority of applications fell into a single cluster. In this sec-
tion, we describe our approaches to predict performance 
scores of unknown applications. These approaches derive 
normalized performance scores of an application from its 
measured system-level workload characteristics.  

For evaluation, we randomly choose one application U 
from our experimental setup. By using the remainder of the 
applications as a benchmark set (B1, B2, …, Bn), we predict 
U’s normalized scores against benchmark applications (i.e. 
NS(U@B1), NS(U@B2), … NS(U@Bn)), benchmark ap-
plications’ normalized scores against U (i.e. NS(B1@U), 
NS(B2@U), … NS(Bn@U)), and U’s normalized score 
against itself (NS(U@U)). Then, we compare predicted 
scores with actual measured scores. 
5.1.Weighted Mean Method 

Hoste et al. [11] predicted applications performance us-
ing program similarity of benchmark programs surrounding 
the application. We use a similar mechanism to predict per-
formance of an unknown application U. A comparison of the 
two approaches will be discussed in a later section.  

For similarity of two applications, we calculate distances 
of two foreground workload characteristic vectors. Since the 
high dimensionality of our data (10 system-level character-
istics) can obscure the meaningful distances between data 
points [3], we use principal component analysis (PCA) [10]. 
PCA helps transfer our benchmark data points into more 
meaningful coordinates as well as reduce the number of 
dimensions of data. Once we transfer the benchmark space 
using PCA, we choose the most important principal com-
ponents (PCs) that capture the most variance of the data. In 
the analysis described herein, we chose top four PCs, which 
account for around 85% of total variance. (Each represents 
49%, 16%, 12%, and 8% of total variance, respectively.) We 
show factor loadings for the top four PCs in Figure 5-1. 

To calculate the predicted score of U@Bn, we do as fol-
lows. First, in PCA-transferred space, we calculate Euclidean 

distances from the desired point, U@Bn, to all known 
benchmark results and choose the N closest data points as a 
near set.  Similarity between the desired point and a point in 
the near set is defined as an inverse of distance. We, in turn, 
calculate the weight of each datum in a near set proportional 
to the similarity. Thus, we have 

∑=
N

iii ssw / where si is a similarity of an app i in the 

near set  

Finally, we calculate a predicted score of U@Bn  

NS(U@Bn) = ∑ ⋅
N

i iNSw )( . 

We show some of our prediction results Table 5-1. In 
these results, we choose analyser as an unknown application 
and N = 3. As a reference, we show the nearest data point to 
the prediction datum and the distance between them. For 
evaluation, we present mean, median, and maximum predic-
tion error, where prediction error is calculated by | actual 
score – predicted score | ÷ actual score. Our prediction results 
for other applications will be presented later in this section. 
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Figure 5-1 Factor loadings for top four PCs

Table 5-1 Sample prediction results for analyser using weighted mean method 

Data points Actual 
score 

Predicted 
score 

Prediction 
error Nearest data point Nearest 

distance 
analyser@add_double 0.489 0.499 1.99% bzip2@povray 0.0421 
analyser@bzip2 0.450 0.455 1.18% bzip2@cachebuster 0.0547 
analyser@cachebuster 0.397 0.433 8.95% bzip2@cachebuster 0.0628 
analyser@cat 0.679 0.689 1.52% povray@cat 0.1093 

… 
analyser@make 0.461 0.455 1.45% bzip2@make 0.0362 
analyser@spinlock 0.484 0.477 1.44% bzip2@make 0.0368 
add_double@analyser 0.484 0.487 0.64% add_double@cachebuster 0.0074 
bzip2@analyser 0.464 0.473 2.01% bzip2@bw_mem 0.0091 

… 
make@analyser 0.435 0.429 1.27% make@cp 0.0153 
povray@analyser 0.465 0.469 0.91% povray@cachebuster 0.0048 
Average error   1.81%   
Median error   1.25%   
Max error   8.95%   
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5.2.Linear Regression Analysis 
5.2.1. Background 

One of the most commonly used statistical procedures to 
model relationships between variables is regression analysis 
[7]. It relates a dependent variable Y with explanatory vari-
ables X1, X2, … Xn, used as predictors. A simple form of 
regression analysis is linear regression, in which we assume 
the dependent variable is a linear function of explanatory 
variables.  Then we have, 

nnaaaa Χ⋅++Χ⋅+Χ⋅+=Υ …22110
 

The goal of linear regression analysis is to find coeffi-
cients naaa ,,, 10 … , to minimize error | Υ−Υ |  
5.2.2. Linear Regression Analysis on Score Prediction 

 We modeled our system using linear regression analysis. 
Normalized scores of unknown data points were a dependent 
variable and system-level workload characteristics were 
explanatory variables. A benchmark set of workload char-
acteristics were used as training data to determine coeffi-
cients. Once coefficients are calculated using least squares 
method, we simply applied workload characteristic vectors to 
the equation to get predicted scores.  

As sample results, we present regression coefficients and 
prediction results for analyser in Table 5-2 and Table 5-3.  

Table 5-2 Linear regression coefficients for analyser 
X coefficient X coefficient 

cputime 6.60E-01 reads_issued 5.70E-04 
cachehits -3.98E-10 time_reading -4.41E-05 
cachemisses -6.62E-10 writes_issued 1.95E-05 
vmswitches -4.99E-04 time_writing -7.13E-06 
novmswitches -1.06E-03 blocks 8.19E-04 

a0 4.33E-01   
 

Table 5-3 Sample prediction results for analyser using linear 
regression analysis 

Data points Actual 
score 

Predicted 
score Error 

analyser@add_double 0.489 0.486 0.59% 
analyser@bzip2 0.450 0.496 10.23% 
analyser@cachebench 0.465 0.484 4.13% 
analyser@cachebuster 0.397 0.487 22.72% 
analyser@cat 0.679 0.685 0.95% 

… 
analyser@make 0.461 0.476 3.07% 
analyser@povray 0.479 0.484 1.14% 
analyser@spinlock 0.484 0.478 1.34% 
add_double@analyser 0.484 0.493 1.89% 
bzip2@analyser 0.464 0.504 8.64% 

… 
make@analyser 0.435 0.469 7.92% 
povray@analyser 0.465 0.483 3.99% 
spinlock@analyser 0.497 0.510 2.63% 
analyser@analyser 0.480 0.493 2.69% 
Average error   7.3% 
Median error   3.8% 
Max error   38.5% 

5.3.Evaluation of Performance Prediction Methods 
5.3.1. Performance Prediction for Various Workloads 

We present performance prediction results for all appli-

cations we have in our experimental setup. Figure 5-2 and 
Figure 5-3 show median, mean, and maximum values of 
prediction errors for each workload with weighted mean 
method and regression analysis, respectively. 
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Figure 5-2 Mean, median, and max error of performance pre-

diction with weighted mean method 
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Figure 5-3 Mean, median, and max error of performance pre-

diction with linear regression analysis 
 

The weighted mean method predicts performance scores 
relatively correctly across applications. The application with 
the worst average prediction error is iozone, which has 14.3% 
average prediction error. Meanwhile, grep has the largest 
maximum prediction error. Average prediction error for 
cachebuster and bw_mem are 6.4% and 5.7%, respectively, 
which are higher than others. Median prediction error for 
most applications is below 6%, except cat and grep. Those 
applications, such as cat, grep, cachebuster, and iozone, are 
the ones that have high performance variation. We think the 
high variance made our algorithm harder to predict. Overall 
mean and median prediction error is 5.0% and 2.3%, respec-
tively. 

Linear regression analysis results are shown in Figure 5-3. 
Compared with weighed mean method, we can see that 
maximum prediction error for most applications is signifi-
cantly high. Despite the maximum prediction error, the me-
dian prediction error is still low for some applications, such 
as, add_double and povray. One possible explanation for 
worse prediction results for linear regression analysis is that 
correlation between workload characteristics and perform-
ance is not linear. We leave non-linear regression analysis as 
future work. 
5.3.2. Performance Prediction in Various Machines 

We ran our experiments in a variety of physical hosts, in 
order to explore the applicability of our mechanisms across 
different physical hosts. We only show weighted mean 
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method results, since that technique predicts more accurately 
than linear regression analysis in almost every case. Figure 
5-4 is performance prediction results with a machine that has 
a bigger L2 data cache. Figure 5-5 shows results with a 
dual-processor SMP machine. Both results indicate that our 
performance prediction mechanisms work well with different 
hardware configurations. Overall mean and median predic-
tion error in both machines are 7.9% and 2.5%, and 4.8% and 
1.2%, respectively.  
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Figure 5-4 Mean, median, and max error of performance pre-

diction in a machine of different cache size 
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Figure 5-5 Mean, median, and max error of performance pre-

diction in a dual processor machine 
 

6. DISCUSSION 
The performance prediction of applications will be espe-

cially beneficial for large/complex data centers, not only for 
improving relatively-static allocation of workloads to 
physical resources, but also as input into more compli-
cated/dynamic orchestration systems. As trends toward vir-
tualization continue, we assert that identification, prediction, 
and prevention of interference will improve performance and 
also boost overall utility (utilization).  

We believe that one of the reasons our prediction results 
are good is that our benchmark programs cover a broad 
segment of the workload space. That is, a new application 
can be compared to considerably close application(s), from 
which we can predict the performance scores with reasonable 
accuracy. Thus, we believe that selecting a good set of 
benchmark programs is very important in real-world appli-
cation of our techniques.  The small margins of error in our 
predictions lend confidence that we will be able to use these 
techniques to further characterize workloads and predict 
interference; these data will be useful for a number of data-
center optimizations such as capacity planning and resource 

allocation among distributed applications. 
With more than two concurrent VMs present, there is a 

chance that we may be able to predict performance scores of 
a VM using data collected with two VMs. This is because our 
prediction methods use workload characteristics solely from 
the domain, in which the target application is running. If 
otherwise, our methods will be required to collect different 
test data points for different numbers of VMs. We plan to 
extend our VRA system to support more than two VMs and 
research more details in the future. 

7. RELATED WORK 
Predicting the performance of applications using program 

characteristic similarity was discussed in [11][14]. They 
collected microarchitecture-independent variables to capture 
intrinsic behaviors of applications and predicted performance 
speed-up by calculating weighted average derived from pro-
gram similarity in different machines. Our weighted mean 
method follows a similar approach to calculate the predicted 
score. However, our approaches differ in two aspects. First, 
we use system-level workload characteristics. Second, we 
consider the effects of performance interference. Previous 
work does not attempt to predict the performance score of 
competing applications. 

Eeckhout et al. [6] studied the clustering of benchmark 
and input set pairs to find representative pairs in benchmark 
space. They used statistical data analysis techniques such as 
PCA to efficiently explore the workload space. Our work 
used similar techniques, but we focus specifically on pro-
gram-program pairs rather than program-inputset pairs. 

Resource contention between processes in a single OS is 
well-researched. Chandra et al. [4] predicted the L2 cache 
miss rates using three performance models for capturing the 
impact of cache sharing on co-scheduled threads. Settle et al. 
[15] introduced hardware activity vectors to monitor the 
access patterns on the cache, predicting inter-thread cache 
conflicts and improving job scheduling. In this paper, we 
successfully predicted overall system performance under 
both cache and I/O interference. 

Other researchers have put their efforts into managing 
resources in a system to meet QoS requirements. Banga et al. 
[2] proposed new abstraction called a resource container. The 
resource container, which decouples resource management 
with process abstraction, is used for fair scheduling among 
activities. The Nemesis operating system [12] was designed 
to provide QoS guarantees to applications. Nemesis avoids 
QoS crosstalk by vertically-structured operating systems. 
However, these approaches require visibility to applications, 
which is not provided in virtualized environments due to 
isolation.    

Performance interference among virtual machines is be-
ing researched. Gupta et al. [8] implemented XenMon to 
monitor the CPU usage of each guest and device driver do-
main and passed the usage information to a hypervisor 
scheduler for fair scheduling between applications that use 
device driver domains and ones that do not. Our system 
collects a greater variety of system characteristics including 
CPU usage for each domain. In our future work, we will 
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explore the opportunity to use the collected system charac-
teristics for hypervisor scheduling that leads to less per-
formance interference among guest domains. 

8. CONCLUSIONS AND FUTURE WORK 
Virtualization is becoming widely used in large data-

centers, due to the many advantages it brings. However, 
current technologies do not provide performance isolation, 
which can have significantly adverse effects on overall sys-
tem performance. In this paper, we collected the system-level 
characteristics of different workloads collected in our ex-
perimental virtual environments and analyzed the collected 
data closely to characterize the workloads that generate in-
tense performance interference. In addition to that, we de-
veloped performance prediction mechanisms for different 
combinations of workloads. Using our mechanisms, we were 
able to successfully predict the performance scores of the 
applications under performance interference with average 
error of approximately 5%. 

We plan to extend our work in several directions.  
Foremost, our virtual resource allocation environment is 
being extended for more diverse workload scenarios – vari-
ous numbers of concurrent VMs and different types of 
workloads such as network applications. We are also 
broadening our hardware diversity, so that we can determine 
the applicability of measurements (their “relative fit-
ness”[13]) on one platform to another platform.  We also are 
working to add instrumentation of more characteristics that 
might be beneficial in the grouping of applications by inter-
ference type and in improving our performance predictions.  
In the analysis realm, we plan to apply non-linear data 
analysis for performance score prediction, and to continue 
exploration of numerical techniques that will bring deeper 
revelation from the data our test environments generate. 
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