

ABSTRACT
Virtualization is an essential technology in modern datacenters.

Despite advantages such as security isolation, fault isolation, and
environment isolation, current virtualization techniques do not
provide effective performance isolation between virtual machines
(VMs). Specifically, hidden contention for physical resources im-
pacts performance differently in different workload configurations,
causing significant variance in observed system throughput. To this
end, characterizing workloads that generate performance inter-
ference is important in order to maximize overall utility.

In this paper, we study the effects of performance interference
by looking at system-level workload characteristics. In a physical
host, we allocate two VMs, each of which runs a sample application
chosen from a wide range of benchmark and real-world workloads.
For each combination, we collect performance metrics and runtime
characteristics using an instrumented Xen hypervisor. Through
subsequent analysis of collected data, we identify clusters of ap-
plications that generate certain types of performance interference.
Furthermore, we develop mathematical models to predict the per-
formance of a new application from its workload characteristics.
Our evaluation shows our techniques were able to predict per-
formance with average error of approximately 5%.

1. INTRODUCTION

Virtualization technology [1][24][25] offers many ad-
vantages to datacenter administrators and end users. By run-
ning multiple virtual machines (VMs) in a shared physical
machine, virtualization enables high utilization of hardware
resources. Live migration and easy restart of VMs improve
manageability of large datacenters. Meanwhile, virtual ma-
chine technology provides strong isolation among virtual
domains. For example, security isolation prevents a mali-
cious application from attacking applications or accessing
data in other domains. Fault isolation prevents one misbe-
having application from bringing down the whole system.
Environment isolation allows multiple operating systems to
run on the same machine, accommodating legacy applica-
tions and cutting-edge software, each with a separate set of
configurations and parameters.

∗ Most of this work was done while Koh and Wen were interns at Intel
Corporation in the summer of 2006.

Despite such advantages, we have observed that modern
virtual machine technologies do not provide effective per-
formance isolation. While the hypervisor (a.k.a. the virtual
machine monitor) slices resources and allocates shares to
different VMs, the behavior of one VM can still affect the
performance of another adversely due to the shared use of
resources in the system. Furthermore, the isolation provided
by virtualization limits the visibility of an application in a
VM into the cause of performance anomalies that occur in a
virtualized environment. Specifically, a user running the
same virtual machine on the same hardware at different times
will see wide disparity in performance based on the work
performed by other VMs on that physical host. We use the
term performance interference to describe this phenomenon.

The performance interference in virtual environments
differs from one in a traditional operating system in a few
important aspects. First, multiple VMs on a hypervisor con-
tain several independent resource schedulers, each of which
is attempting to manage shared resources without visibility of
the others. Therefore, the system suffers from non-obvious
interference that underlies the OS and is outside the control
of an OS or the hypervisor. Second, the guest OSes and ap-
plications inside a VM cannot – by the nature of isolation –
be fully informed about other work in another domain, and
therefore cannot deterministically measure the effects of
performance interference. Moreover, while an OS can easily
access detailed information of applications it runs, the hy-
pervisor has very low visibility1 into both the guest OS and
its applications. Because of this, many of the possible
state-of-the-art optimization techniques are difficult for the
hypervisor to implement. Finally, some hypervisors insert
another layer of abstraction by offloading certain operations
such as I/O operations to service VMs. This additional redi-
rection created by the hypervisor layer particularly affects the
performance of I/O-intensive applications; for example,
since the Xen hypervisor forces all the I/O operations from
guest OSes to pass through a special device driver domain,
the context-switches into and out of a device driver domain

1 Indeed, this opacity is often regarded as a feature, allowing the hyper-
visor to be less complex and therefore easier to optimize and debug.

An Analysis of Performance Interference Effects

in Virtual Environments

Younggyun Koh1∗, Rob Knauerhase2, Paul Brett2, Mic Bowman2, Zhihua Wen3∗, Calton Pu1

1 College of Computing
Georgia Institute of Technology
{young, calton@cc.gatech.edu}

2 Intel Corporation
knauer@jf.intel.com,

{paul.brett, mic.bowman}@intel.com

3 EECS Department
Case Western Reserve University

{zxw20@eecs.cwru.edu}

2001-4244-1081-9/07/$25.00 ©2007 IEEE

result in a dimension of performance interference unique to
virtualization.

In this paper, we study performance interference among
the selected applications in our experimental virtual envi-
ronments. By analyzing the system-level characteristics
collected from the virtual environments, we have observed
that a significant degree of performance interference exists
when we run certain types of applications on shared hardware
at the same time. To understand the performance behaviors
of applications under performance interference, we classify
applications using different metrics. Furthermore, we de-
velop mechanisms to predict the expected performance
scores of the applications running different types of work-
loads. Our mechanisms were able to predict scores with
average error of approximately 5%.

The paper is organized as follows. Section 2 presents our
experimental setup. Section 3 shows initial performance
results to motivate our problems. In section 4, we identify
performance interference by characterizing workloads. Sec-
tion 5 introduces and evaluates our performance prediction
mechanisms. We discuss the usefulness of our work and
related work in section 6 and section 7. We conclude with
summary and future work in section 8.

2. EXPERIMENTAL SETUP
2.1.Virtual Resource Allocation Environments

For our study of performance interference, we developed
an experimental virtual resource allocation (VRA) environ-
ment. In this environment, we can remotely create numerous
virtual machines with different resource specifications in
different physical hosts. In each VM, we run a wide range of
different applications to gain actual data for our analysis. The
applications we use for our experiments are chosen from
real-world workloads, such as compression, the compilation
of source code, and rendering frames, as well as from
well-known benchmark suites, such as the SPEC2000 CPU
benchmark [23] and lmbench benchmark suite [21].

In this study, two VMs are created in a physical host,
using the Xen hypervisor [1][25]. Each VM domain (“dom1”
and “dom2”, respectively) runs one of our VRA applications.
Notationally, the application running in dom1 is called the
“foreground” application, and the one in dom2 is the “back-
ground” application. A foreground application F running
against background application B is denoted as F@B. Be-
cause the running time of each application varies, we ensure
the background applications stay active by restarting them if
needed in dom2 while foreground applications complete. We
run the applications in a way that every application runs both
as foreground and background, so as to construct an n x n
matrix, containing all the possible combinations of meas-
urement results.

For a hypervisor scheduler, we used the Borrowed Virtual
Time scheduler (BVT) [5], which is one of the mature Xen
hypervisor schedulers currently available.
2.2.VRA Applications

We carefully choose our test applications to stress various
aspects of the system and hardware.

Add_double is a sub-benchmark program from the AIM

benchmark suite [17]. Add_double measures the performance
of double precision adding operations. Analyser is a bench-
mark program from the Freebench benchmark suite [19].
Analyzer’s performance is limited by the memory subsystem.
Bzip2 and gzip are popular compression applications. They
are also included in the SPEC CPU2000 benchmark suite
[23]. We run bzip2 and gzip for compressing text files with
the –best option. Ccrypt is a popular open-source encryp-
tion and decryption tool, and we encrypt a variety of text files
in our experiment. For compression and encryption applica-
tions, we use files sufficiently large so as not to fit in the file
cache of the guest operating systems.

Cachebench [18] is an open-source benchmark program
that determines the performance of a memory subsystem. We
wrote a program (cachebuster) that invalidates the cache
content quickly by striding memory address space by the
cache line size of the underlying physical processor. Cat and
grep are popular Linux tools that generate a lot of disk read
requests; we use large text files as input for these experiments.
We also use cp and dd to generate disk write activity, copying
small files into a complicated directory structure. Iozone [20]
is another disk I/O benchmark suite, providing varied read
and write tests. Bw_mem is a memory benchmark program
included in the lmbench benchmark suite [21].

We also measure the performance of building a source
code package, specifically a recent version of the Apache
web server [16]; this test is referred to simply as make.
Povray [22] is a frame rendering tool for 3-D graphics. Fi-
nally, we wrote a very simple program named spinlock that
loops infinitely, consuming almost nothing but CPU cycles.

Some of the VRA applications produce explicit per-
formance scores. For the rest of the applications, we regard
the inverse of the elapsed time of one run as its performance
score. We summarize our applications in Table 2-1.

Table 2-1 VRA Test Applications

Name Major re-
source used Performance measurement

Add_double CPU Score
Analyser Memory Elapsed time
Bw_mem Memory Score
Bzip2 Mixed Elapsed time
Cat Disk Elapsed time
Cachebench Memory Score
Cachebuster Memory Elapsed time
Ccrypt Mixed Elapsed time
Cp Disk Elapsed time
Dd Disk Elapsed time
Grep Disk Elapsed time
Gzip Mixed Elapsed time
Iozone Disk Score
Make Mixed Elapsed time
Povray Mixed Elapsed time
Spinlock CPU Elapsed time

2.3.Normalized Performance Score
Since we are interested in finding out the extent to which

performance is affected by interference generated by an
application running in the other domain, we use degradation
from standard performance as a normalized score. To cal-

201

culate normalized scores of an application, first we define
idle performance scores as the scores of applications when
they are running against an idle domain2. Then, we calculate
a normalized score of application F running against B, di-
viding the score of F by its idle performance score. Thus, we
have NS(F@B), a normalized score of F against B,

)@(/)@()@(IdleFrePerformScoBFrePerformScoBFNS =

Since we are interested the overall performance of ap-
plications, we define NS (F+B), combined performance of
two applications, F and B, in each domain,

)@()@()(FBNSBFNSBFNS +=+

NS(F@B) and NS(B@F) are measured in two separate
experiments.

3. PERFORMANCE INTERFERENCE
We present combined performance results for sample

applications in Figure 3-1. Note that the performance scores
are normalized. Thus, any application running standalone has
normalized performance of 1, as in bzip2. Ideally, the ex-
pected combined performance is 1, assuming each applica-
tion uses exactly half resources in the system. The dashed
line in the graph represents the ideal expected performance.

0

0.5

1

1.5

2

b
zi

p
2

g
re

p
+

p
o
vr

a
y

b
zi

p
2
+

g
re

p

cp
+

sp
in

lo
ck

cc
ry

p
t+

cc
ry

p
t

g
re

p
+

g
re

p

C
o
m

b
in

e
d
 a

p
p
lic

a
ti
o
n
 p

e
rf

o
rm

a
n
ce

Figure 3-1 Varying performance with different combinations of

applications

We notice, however, that combined performance varies
substantially with different combinations of applications.
Applications that rarely interfere with each other achieve
performance close to the standalone performance, resulting
in combined performance close to 2, as in grep+povray.
However, some combinations interfere with each other in an
adverse way, and their combined performance drops sig-
nificantly – for example, down to 0.35, as in grep+grep.

The performance interference we observe here derives
from state in the shared physical resources between VMs. For
example, if an application runs in a VM by itself, it can use
techniques to warm the cache(s) and take advantage of this
faster memory for improved performance. However, when
the hypervisor switches to another VM (e.g. at the end of
each quantum), the new VM gains access to the cache(s).
Consequently, when the original VM regains access to the
cache, there is high probability that the cache is at least par-

2 This allows us to eliminate the virtualization overhead, the optimization
of which is a separate matter.

tially cold. Worse yet, because the hypervisor is opaque in its
representation of physical hardware, the application and the
guest OS are not aware of these changes, which makes it
difficult to apply traditional optimization techniques.

Other resources that provide some amount of state in-
clude disk storage. For example, a streaming read will be
interrupted by any disk access that another VM does. While
techniques such as anticipatory scheduling in the hypervisor
[9] helps reduce overhead in certain cases, this interference
can have a significant effect on performance, depending on
the access pattern of each VM, the time quantum of the hy-
pervisor, and the nature of the storage system.

4. ANALYSIS OF PERFORMANCE INTERFERENCE
4.1.System-level Workload Characteristics

To capture VM behaviors that generate performance in-
terference, we collect system-level workload characteristics
through an instrumented hypervisor as described earlier. We
decide to collect system-level characteristics for workload
characterization in two reasons. First, these characteristics
are independent of the underlying micro-architecture, so we
can draw comparisons across physical hosts of different
types. Second, by measuring characteristics from outside of
the VM environment, we eliminate the needs of simulation or
re-compilation of applications or modification of the guest
OS.

In our experimental setup, we collected the following 10
different workload characteristics per each VM:

Average CPU utilization (cpuutil). We derive av-
erage CPU utilization by dividing cputime used for a VM by
the elapsed (wall-clock) time of the VM. Cputime is col-
lected by the hypervisor.

Cache hits and misses per second (cachehits,
cachemisses). Cache behavior is an important metric to
understand the memory usage of a VM. Our instrumented
hypervisor provides us with cache hit and miss numbers from
counters in the processor.

Virtual machine switches per second (vmswitches,
novmswitches). We measure how many times the hy-
pervisor switches control to a different VM (vmswitches)
or returns to the same VM (novmswitches).

I/O blocks per second (blocks). We also measure how
many times a VM is blocked due to I/O waiting, when it
relinquishes the remainder of its quantum to the hypervisor.

Disk reads and writes issued per second
(reads_issued, writes_issued). Disk reading and
writing time per VM (time_reading,
time_writing). The numbers of read and write requests
issued to (virtual) disk device drivers and the time spent for
the requests are good indicators of I/O.

202

Table 4-1 System-level characteristics of benchmark applications against idle

 cpuutil cachehits (K) cachemisses (K) vmswitches novmswitches
add_double 1.00 310.31 8.74 63.87 58.66
analyser 1.00 42299.19 7821.22 61.00 59.97
bzip2 0.96 46008.36 3581.26 96.77 56.31
cachebench 1.00 144327.44 1683.38 55.94 62.20
cachebuster 1.01 17531.42 17242.03 71.70 59.12
cat 0.22 12790.63 502.35 619.39 2.08
ccrypt 0.96 13809.18 359.98 327.10 3.48
cp 0.84 59524.61 2343.92 511.30 47.36
dd 0.82 54976.78 2152.38 571.84 45.59
grep 0.02 1753.52 47.37 403.74 0.00
gzip 0.98 142100.17 228.14 176.39 28.16
iozone 0.11 8631.83 798.31 1607.07 0.59
bw_mem 1.01 10107.07 51040.85 81.93 70.71
make 0.98 92662.22 1567.48 94.36 59.86
povray 1.00 59365.30 5.88 58.48 60.65
spinlock 1.00 276.02 10.86 61.28 61.93
 reads_issued time_reading writes_issued time_writing blocks
add_double 0.67 2.66 3.68 21.62 2.31
analyser 1.29 2.57 1.03 0.43 1.78
bzip2 83.32 252.42 0.57 0.27 11.65
cachebench 0.22 1.60 0.34 0.16 0.58
cachebuster 1.07 4.11 0.74 0.00 6.66
cat 186.02 791.79 1.76 25.09 266.69
ccrypt 475.42 997.34 1.31 26.62 4.22
cp 15.02 37.49 711.79 8628.56 271.48
dd 15.92 37.87 750.01 9263.64 325.66
grep 292.65 978.97 3.23 57.51 401.60
gzip 201.77 314.82 0.83 0.65 1.61
iozone 631.20 2436.34 1192.50 16369.25 1581.08
bw_mem 1.46 9.75 2.44 0.00 14.87
make 10.10 32.55 24.64 83.32 16.09
povray 0.36 1.60 0.60 0.00 0.57
spinlock 0.24 1.19 0.54 0.00 3.33

In Table 4-1, we show workload characteristics of our
benchmark applications running against an idle domain.
Notice that CPU- and memory-intensive applications have
high average CPU utilization, while I/O-intensive applica-
tions do not fully consume their assigned CPU quanta. Some
real-world applications, such as bzip2 and make, have high
I/O indicators, since they read input files from disk. Mem-
ory-intensive benchmark programs show high cache num-
bers, particularly high miss numbers. Compression applica-
tions have relatively high cachehits but low cachemisses,
which implies that they frequently access a small working set
of memory (and are likely tuned for performance in this
way).

4.2.Performance against Different Workloads
As described earlier, the performance score of each ap-

plication varies depending on the type of application running
in the other domain. We show our measured performance
scores of benchmark applications in Figure 4-1.

Ideally, since we run two VMs in a physical host, the

expected performance score of each application is 0.5, on the
assumption that each application makes use of exactly half of
resources in real hardware. However, we notice that per-
formance scores of applications are greatly affected by
background applications. grep has the largest variance for
performance scores among the test applications, while dd has
the least. Meanwhile, iozone as a background application
gives the most diverse performance scores for foreground
applications, cp as a background does the least. Note that the
normalized performance of all the applications against an
idle domain is 1.
4.2.1. Cache Interference

Cachebuster is a program of our own design that invali-
dates processor cache quickly, walking the address space by
striding by the cache-line size of the underlying physical
processor. Against cachebuster, some of the applications,
particularly memory-intensive ones, such as cachebench,
cachebuster, and analyser, suffer from significant perform-
ance interference.

203

0

0.5

1

a
d
d
_
d
o
u
b
le

a
n
a
ly

se
r

b
zi

p
2

ca
ch

e
b
e
n
ch ca

t

cc
ry

p
t

cp d
d

g
re

p

g
zi

p

m
a
ke

p
o
vr

a
y

Foreground workloads

C
o
m

b
in

e
d
 w

o
rk

lo
a
d

p
e
rf

o
rm

a
n
ce

@idle @spinlock @cachebuster @ccrypt @cp @grep

Figure 4-1 Performance score variations for selected foreground and background workloads

Table 4-2 shows workload characteristics of analyser and
cachebuster when they are running against each other. Note
that both programs use CPU quanta evenly. Because analyser
is now scheduled for half of the time, one would naïvely
expect to see analyser having half cache hit and miss num-
bers of the idle case, that is, 42299.19 / 2 = 21149.60 and
7821.22 / 2 = 3910.6. However, with cachebuster in dom2,
analyser’s measured characteristics show lower cache hits
and higher misses than expected numbers. This 20-30%
difference of cache behavior is reflected in the performance,
since the performance of analyser@cachebuster is 0.39,
which is 20% less than the anticipated performance of 0.5.

Table 4-2 Workload characteristics of analyser@cachebuster
domain Dom1 Dom2

workload analyser cachebuster
cpuutil 0.50 0.50

cachehits(K) 15162.8 5243.3
cachemisses(K) 4970.7 9746.2

vmswitches 484.2 486.6
novmswitches 23.6 23.7
reads_issued 0.5 0.0
time_reading 1.4 0.0
writes_issued 0.4 0.0
time_writing 0.3 0.0

blocks 0.7 0.0

4.2.2. I/O Interference
Grep and cat have unique performance patterns com-

pared with most of other applications. While they perform
relatively well against CPU- and memory-intensive applica-
tions, their performance drops significantly against applica-
tions such as ccrypt and gzip (including themselves). Note
that grep and cat have high numbers for I/O characteristics.
The applications that significantly affect the performance of
grep and cat also have relatively high I/O characteristic
numbers in Table 4-1. Our results indicate that there is a
significant degree of performance interference between
I/O-intensive applications. We show the workload charac-
teristics of cat@grep in Table 4-3, to see how workload
characteristics change depending on the background inter-
ference.

Table 4-3 Workload characteristics of cat@grep
domain Dom1 Dom2

workload cat grep
cpuutil 0.06 0.01

cachehits(K) 3547.6 435.2
cachemisses(K) 197.1 60.0

vmswitches 252.0 154.0
novmswitches 0.0 0.0
reads_issued 51.2 48.9
time_reading 952.7 993.5
writes_issued 0.8 1.1
time_writing 16.3 24.3

blocks 149.3 151.1

Note that cat’s reads_issued numbers are significantly
reduced (from 186.0 to 51.2), compared with the idle case.
Meanwhile, the time_reading increased from 791.8 to 952.7.
This indicates that cat is spending more time for fewer
numbers of disk reading operations. Cat suffers from this
inefficiency, resulting in a poor normalized score, 0.28. On
the contrary, CPU utilization of cat becomes even smaller
due to increased I/O waiting time. Therefore, CPU-intensive
programs against cat are able to achieve better performance.
4.3.Application Clustering

With our findings about performance interference, we
explore application clustering according to their measured
characteristics. The application clusters would be useful for
predicting performance of a new application since we can
predict its performance by looking at performance of another
application in the same cluster.
4.3.1. Clustering applications using performance
scores and workload characteristics

For further analysis, we ran a hierarchical clustering al-
gorithm using each application’s performance score vector3,
which consists of normalized performance scores of an ap-
plication against all the background applications. The resul-

3 We used R (http://www.r-project.org), a free software tool for
statistical computing, for our analysis and statistical modeling in
section 4 and section 5.

204

tant dendrogram is presented in Figure 4-2. The height of the
graph represents the distance between clusters; applications
can be grouped into clusters based on the tree structure that
comes from the analysis.

Figure 4-2 Workload clustering using scores

Figure 4-3 Workload clustering using system-level characteristics

The clustering dendrogram confirms the performance
score graph shown earlier. Cat and grep have similar per-
formance patterns; while iozone and ccrypt have their own
performance curve, and all others follow a similar pattern.

In order to investigate the relationship between per-
formance score and workload characteristics, we ran a hier-
archical clustering algorithm with just our system-level
characteristics. Because we have 10 characteristic variables,
each application has a characteristic signature vector of
length of 10 * 16 (the number of the background workloads).
Since each workload characteristic has a different range, we
scaled each variable v such that 0 ≤ v ≤ 1.

Figure 4-3 shows the results for clustering using system
level characteristics, which shows significant differences
compared with Figure 4-2. We had expected to see similar
clustering results, on the assumption that the shape of work-
load characteristics will have the most direct impact on the
performance. One possible explanation for these results is
that we gave all the characteristics equal weight. Since cor-
relation of some workload characteristics with the perform-
ance is stronger than others, we decided to apply a weighted
clustering algorithm.
4.3.2. Weighted Clustering

From Figure 4-2, we learned that large numbers of the
applications, add_double, analyser, bw_mem, bzip2, cp, dd,
gzip, cachebench, cachebuster, make, povray, and spinlock,
have similar performance patterns. We propose that the

characteristic variables changing less among those applica-
tions should have greater impact on the performance. In order
to measure the rate of change, we calculate the standard
deviation divided by the mean (coefficient of variation) for
each characteristic variable.
Table 4-4 coefficient of variation for each characteristic vari-

able for chosen applications
x stddev(x)/mean(x)

cpuutil 0.28
cachehits(K) 0.96

cachemisses(K) 1.89
vmswitches 0.27

novmswitches 0.70
reads_issued 2.18
time_reading 3.53
writes_issued 2.28
time_writing 2.45

blocks 2.35

Table 4-4 shows the calculated values for each variable.
From the table, we notice CPU utilization and virtual ma-
chine switching numbers stay relatively stable. This implies
they are more important factors to determine the performance
of applications. To reflect this, we take the inverse of a cal-
culated value to get a weight for each variable. After multi-
plying weights by each corresponding column in our matrix,
we get the following clustering dendrogram (Figure 4-4). We
can see that weighted clustering gives us clustering results
significantly closer to the performance score clusters.

Figure 4-4 Weighted workload clustering with system-level

characteristics
Because of this similarity, and its correspondence with

intuition, we believe that weighting characteristics based on
the variability of known workloads improves the clustering,
and provides a basis from which to further research which
characteristics have what significance for this purpose. Our
future work will include isolating the particularly important
characteristics, and determining which other characteristics
our system (in its instrumented hypervisor and elsewhere in
the platform) can produce.

5. APPLICATION PERFORMANCE PREDICTION
In section 4, we learned that certain types of applications

can generate significant performance interference and
showed application clusters according to them. While clus-
tering helped us understand the relations between applica-
tions, however, clustering results alone were not enough for

205

us to predict the performance score of new applications, since
majority of applications fell into a single cluster. In this sec-
tion, we describe our approaches to predict performance
scores of unknown applications. These approaches derive
normalized performance scores of an application from its
measured system-level workload characteristics.

For evaluation, we randomly choose one application U
from our experimental setup. By using the remainder of the
applications as a benchmark set (B1, B2, …, Bn), we predict
U’s normalized scores against benchmark applications (i.e.
NS(U@B1), NS(U@B2), … NS(U@Bn)), benchmark ap-
plications’ normalized scores against U (i.e. NS(B1@U),
NS(B2@U), … NS(Bn@U)), and U’s normalized score
against itself (NS(U@U)). Then, we compare predicted
scores with actual measured scores.
5.1.Weighted Mean Method

Hoste et al. [11] predicted applications performance us-
ing program similarity of benchmark programs surrounding
the application. We use a similar mechanism to predict per-
formance of an unknown application U. A comparison of the
two approaches will be discussed in a later section.

For similarity of two applications, we calculate distances
of two foreground workload characteristic vectors. Since the
high dimensionality of our data (10 system-level character-
istics) can obscure the meaningful distances between data
points [3], we use principal component analysis (PCA) [10].
PCA helps transfer our benchmark data points into more
meaningful coordinates as well as reduce the number of
dimensions of data. Once we transfer the benchmark space
using PCA, we choose the most important principal com-
ponents (PCs) that capture the most variance of the data. In
the analysis described herein, we chose top four PCs, which
account for around 85% of total variance. (Each represents
49%, 16%, 12%, and 8% of total variance, respectively.) We
show factor loadings for the top four PCs in Figure 5-1.

To calculate the predicted score of U@Bn, we do as fol-
lows. First, in PCA-transferred space, we calculate Euclidean

distances from the desired point, U@Bn, to all known
benchmark results and choose the N closest data points as a
near set. Similarity between the desired point and a point in
the near set is defined as an inverse of distance. We, in turn,
calculate the weight of each datum in a near set proportional
to the similarity. Thus, we have

∑=
N

iii ssw / where si is a similarity of an app i in the

near set

Finally, we calculate a predicted score of U@Bn

NS(U@Bn) = ∑ ⋅
N

i iNSw)(.

We show some of our prediction results Table 5-1. In
these results, we choose analyser as an unknown application
and N = 3. As a reference, we show the nearest data point to
the prediction datum and the distance between them. For
evaluation, we present mean, median, and maximum predic-
tion error, where prediction error is calculated by | actual
score – predicted score | ÷ actual score. Our prediction results
for other applications will be presented later in this section.

-1

0

1

cp
u
ti
m

e

ca
ch

eh
it
s

ca
ch

em
is

se
s

vm
sw

it
ch

es

n
o
vm

sw
it
ch

es

re
ad

s_
is

su
ed

ti
m

e_
re

ad
in

g

w
ri
te

s_
is

su
ed

ti
m

e
_
w

ri
ti
n
g

b
lo

ck
s

PC 1 PC 2 PC 3 PC 4

Figure 5-1 Factor loadings for top four PCs

Table 5-1 Sample prediction results for analyser using weighted mean method

Data points Actual
score

Predicted
score

Prediction
error Nearest data point Nearest

distance
analyser@add_double 0.489 0.499 1.99% bzip2@povray 0.0421
analyser@bzip2 0.450 0.455 1.18% bzip2@cachebuster 0.0547
analyser@cachebuster 0.397 0.433 8.95% bzip2@cachebuster 0.0628
analyser@cat 0.679 0.689 1.52% povray@cat 0.1093

…
analyser@make 0.461 0.455 1.45% bzip2@make 0.0362
analyser@spinlock 0.484 0.477 1.44% bzip2@make 0.0368
add_double@analyser 0.484 0.487 0.64% add_double@cachebuster 0.0074
bzip2@analyser 0.464 0.473 2.01% bzip2@bw_mem 0.0091

…
make@analyser 0.435 0.429 1.27% make@cp 0.0153
povray@analyser 0.465 0.469 0.91% povray@cachebuster 0.0048
Average error 1.81%
Median error 1.25%
Max error 8.95%

206

5.2.Linear Regression Analysis
5.2.1. Background

One of the most commonly used statistical procedures to
model relationships between variables is regression analysis
[7]. It relates a dependent variable Y with explanatory vari-
ables X1, X2, … Xn, used as predictors. A simple form of
regression analysis is linear regression, in which we assume
the dependent variable is a linear function of explanatory
variables. Then we have,

nnaaaa Χ⋅++Χ⋅+Χ⋅+=Υ …22110

The goal of linear regression analysis is to find coeffi-
cients naaa ,,, 10 … , to minimize error | Υ−Υ |
5.2.2. Linear Regression Analysis on Score Prediction

 We modeled our system using linear regression analysis.
Normalized scores of unknown data points were a dependent
variable and system-level workload characteristics were
explanatory variables. A benchmark set of workload char-
acteristics were used as training data to determine coeffi-
cients. Once coefficients are calculated using least squares
method, we simply applied workload characteristic vectors to
the equation to get predicted scores.

As sample results, we present regression coefficients and
prediction results for analyser in Table 5-2 and Table 5-3.

Table 5-2 Linear regression coefficients for analyser
X coefficient X coefficient

cputime 6.60E-01 reads_issued 5.70E-04
cachehits -3.98E-10 time_reading -4.41E-05
cachemisses -6.62E-10 writes_issued 1.95E-05
vmswitches -4.99E-04 time_writing -7.13E-06
novmswitches -1.06E-03 blocks 8.19E-04

a0 4.33E-01

Table 5-3 Sample prediction results for analyser using linear
regression analysis

Data points Actual
score

Predicted
score Error

analyser@add_double 0.489 0.486 0.59%
analyser@bzip2 0.450 0.496 10.23%
analyser@cachebench 0.465 0.484 4.13%
analyser@cachebuster 0.397 0.487 22.72%
analyser@cat 0.679 0.685 0.95%

…
analyser@make 0.461 0.476 3.07%
analyser@povray 0.479 0.484 1.14%
analyser@spinlock 0.484 0.478 1.34%
add_double@analyser 0.484 0.493 1.89%
bzip2@analyser 0.464 0.504 8.64%

…
make@analyser 0.435 0.469 7.92%
povray@analyser 0.465 0.483 3.99%
spinlock@analyser 0.497 0.510 2.63%
analyser@analyser 0.480 0.493 2.69%
Average error 7.3%
Median error 3.8%
Max error 38.5%

5.3.Evaluation of Performance Prediction Methods
5.3.1. Performance Prediction for Various Workloads

We present performance prediction results for all appli-

cations we have in our experimental setup. Figure 5-2 and
Figure 5-3 show median, mean, and maximum values of
prediction errors for each workload with weighted mean
method and regression analysis, respectively.

0.00%

50.00%

100.00%

150.00%

200.00%

a
d
d
_
d
o
u
b
le

a
n
a
ly

se
r

b
zi

p
2

ca
ch

e
b
e
n
ch

ca
ch

e
b
u
st

e
r

ca
t

cc
ry

p
t

cp d
d

g
re

p

g
zi

p

io
zo

n
e

b
w

_
m

e
m

m
a
ke

p
o
vr

a
y

sp
in

lo
ck

VRA Applications

P
re

d
ic

ti
o

n
 E

rr
o

r

mean median max

Figure 5-2 Mean, median, and max error of performance pre-

diction with weighted mean method

0.00%

100.00%

200.00%

300.00%

a
dd

_d
o
ub

le

a
na

ly
se

r

b
zi

p2

ca
ch

e
b
en

ch

ca
ch

eb
us

te
r

ca
t

cc
ry

p
t

cp dd

g
re

p

gz
ip

io
zo

ne

bw
_m

em

m
ak

e

p
ov

ra
y

sp
in

lo
ck

VRA Applications

P
re

d
ic

ti
o
n
 E

rr
o
r mean median max

Figure 5-3 Mean, median, and max error of performance pre-

diction with linear regression analysis

The weighted mean method predicts performance scores
relatively correctly across applications. The application with
the worst average prediction error is iozone, which has 14.3%
average prediction error. Meanwhile, grep has the largest
maximum prediction error. Average prediction error for
cachebuster and bw_mem are 6.4% and 5.7%, respectively,
which are higher than others. Median prediction error for
most applications is below 6%, except cat and grep. Those
applications, such as cat, grep, cachebuster, and iozone, are
the ones that have high performance variation. We think the
high variance made our algorithm harder to predict. Overall
mean and median prediction error is 5.0% and 2.3%, respec-
tively.

Linear regression analysis results are shown in Figure 5-3.
Compared with weighed mean method, we can see that
maximum prediction error for most applications is signifi-
cantly high. Despite the maximum prediction error, the me-
dian prediction error is still low for some applications, such
as, add_double and povray. One possible explanation for
worse prediction results for linear regression analysis is that
correlation between workload characteristics and perform-
ance is not linear. We leave non-linear regression analysis as
future work.
5.3.2. Performance Prediction in Various Machines

We ran our experiments in a variety of physical hosts, in
order to explore the applicability of our mechanisms across
different physical hosts. We only show weighted mean

207

method results, since that technique predicts more accurately
than linear regression analysis in almost every case. Figure
5-4 is performance prediction results with a machine that has
a bigger L2 data cache. Figure 5-5 shows results with a
dual-processor SMP machine. Both results indicate that our
performance prediction mechanisms work well with different
hardware configurations. Overall mean and median predic-
tion error in both machines are 7.9% and 2.5%, and 4.8% and
1.2%, respectively.

0.00%

50.00%

100.00%

150.00%

200.00%

a
d
d
_
do

u
b
le

a
n
a
ly

se
r

b
zi

p
2

ca
ch

e
b
e
n
ch

ca
ch

e
b
u
st

e
r

ca
t

cc
ry

p
t

cp d
d

g
re

p

g
zi

p

io
zo

n
e

b
w

_
m

e
m

m
a
ke

p
o
vr

a
y

sp
in

lo
ck

VRA Applications

P
re

d
ic

ti
o
n
 E

rr
o

r

mean median max

Figure 5-4 Mean, median, and max error of performance pre-

diction in a machine of different cache size

0.00%

50.00%

100.00%

150.00%

200.00%

a
d
d_

d
ou

b
le

an
a
ly

se
r

bz
ip

2

ca
ch

e
be

n
ch

ca
ch

e
b
us

te
r

ca
t

cc
ry

p
t

cp d
d

g
re

p

g
zi

p

io
zo

n
e

b
w

_
m

em

m
ak

e

po
vr

a
y

sp
in

lo
ck

VRA Applications

P
re

d
ic

ti
o
n
 E

rr
o
r mean median max

Figure 5-5 Mean, median, and max error of performance pre-

diction in a dual processor machine

6. DISCUSSION
The performance prediction of applications will be espe-

cially beneficial for large/complex data centers, not only for
improving relatively-static allocation of workloads to
physical resources, but also as input into more compli-
cated/dynamic orchestration systems. As trends toward vir-
tualization continue, we assert that identification, prediction,
and prevention of interference will improve performance and
also boost overall utility (utilization).

We believe that one of the reasons our prediction results
are good is that our benchmark programs cover a broad
segment of the workload space. That is, a new application
can be compared to considerably close application(s), from
which we can predict the performance scores with reasonable
accuracy. Thus, we believe that selecting a good set of
benchmark programs is very important in real-world appli-
cation of our techniques. The small margins of error in our
predictions lend confidence that we will be able to use these
techniques to further characterize workloads and predict
interference; these data will be useful for a number of data-
center optimizations such as capacity planning and resource

allocation among distributed applications.
With more than two concurrent VMs present, there is a

chance that we may be able to predict performance scores of
a VM using data collected with two VMs. This is because our
prediction methods use workload characteristics solely from
the domain, in which the target application is running. If
otherwise, our methods will be required to collect different
test data points for different numbers of VMs. We plan to
extend our VRA system to support more than two VMs and
research more details in the future.

7. RELATED WORK
Predicting the performance of applications using program

characteristic similarity was discussed in [11][14]. They
collected microarchitecture-independent variables to capture
intrinsic behaviors of applications and predicted performance
speed-up by calculating weighted average derived from pro-
gram similarity in different machines. Our weighted mean
method follows a similar approach to calculate the predicted
score. However, our approaches differ in two aspects. First,
we use system-level workload characteristics. Second, we
consider the effects of performance interference. Previous
work does not attempt to predict the performance score of
competing applications.

Eeckhout et al. [6] studied the clustering of benchmark
and input set pairs to find representative pairs in benchmark
space. They used statistical data analysis techniques such as
PCA to efficiently explore the workload space. Our work
used similar techniques, but we focus specifically on pro-
gram-program pairs rather than program-inputset pairs.

Resource contention between processes in a single OS is
well-researched. Chandra et al. [4] predicted the L2 cache
miss rates using three performance models for capturing the
impact of cache sharing on co-scheduled threads. Settle et al.
[15] introduced hardware activity vectors to monitor the
access patterns on the cache, predicting inter-thread cache
conflicts and improving job scheduling. In this paper, we
successfully predicted overall system performance under
both cache and I/O interference.

Other researchers have put their efforts into managing
resources in a system to meet QoS requirements. Banga et al.
[2] proposed new abstraction called a resource container. The
resource container, which decouples resource management
with process abstraction, is used for fair scheduling among
activities. The Nemesis operating system [12] was designed
to provide QoS guarantees to applications. Nemesis avoids
QoS crosstalk by vertically-structured operating systems.
However, these approaches require visibility to applications,
which is not provided in virtualized environments due to
isolation.

Performance interference among virtual machines is be-
ing researched. Gupta et al. [8] implemented XenMon to
monitor the CPU usage of each guest and device driver do-
main and passed the usage information to a hypervisor
scheduler for fair scheduling between applications that use
device driver domains and ones that do not. Our system
collects a greater variety of system characteristics including
CPU usage for each domain. In our future work, we will

208

explore the opportunity to use the collected system charac-
teristics for hypervisor scheduling that leads to less per-
formance interference among guest domains.

8. CONCLUSIONS AND FUTURE WORK
Virtualization is becoming widely used in large data-

centers, due to the many advantages it brings. However,
current technologies do not provide performance isolation,
which can have significantly adverse effects on overall sys-
tem performance. In this paper, we collected the system-level
characteristics of different workloads collected in our ex-
perimental virtual environments and analyzed the collected
data closely to characterize the workloads that generate in-
tense performance interference. In addition to that, we de-
veloped performance prediction mechanisms for different
combinations of workloads. Using our mechanisms, we were
able to successfully predict the performance scores of the
applications under performance interference with average
error of approximately 5%.

We plan to extend our work in several directions.
Foremost, our virtual resource allocation environment is
being extended for more diverse workload scenarios – vari-
ous numbers of concurrent VMs and different types of
workloads such as network applications. We are also
broadening our hardware diversity, so that we can determine
the applicability of measurements (their “relative fit-
ness”[13]) on one platform to another platform. We also are
working to add instrumentation of more characteristics that
might be beneficial in the grouping of applications by inter-
ference type and in improving our performance predictions.
In the analysis realm, we plan to apply non-linear data
analysis for performance score prediction, and to continue
exploration of numerical techniques that will bring deeper
revelation from the data our test environments generate.

9. REFERENCES
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

I. Pratt, A. Warfield, and R. Neugebauer. Xen and the art of
virtualization. In Proc. of the ACM SOSP. Oct. 2003.

[2] G. Banga, P. Druschel, and J. C. Mogul. Resource containers:
A new facility for resource management in server systems. In
Proceedings of the 3rd Symposium on Operating Systems
Design and Implementation, 1999

[3] S. Berchtold, C. Bohm, D. A. Keim, and H.-P. Kriegel. A cost
model for nearest neighbor search in high-dimensional data
space. In Proc. of the PODS, pages 78-86, 1997

[4] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting In-
ter-Thread Cache Contention on a Chip Multi-Processor Ar-
chitecture. In Proc. of the HPCA. 2005.

[5] K. Duda and D. Cheriton. Borrowed-Virtual-Time (BVT)
Scheduling: Supporting Latency-Sensitive Threads in a Gen-

eralPurpose Scheduler. On Proceedings of the 17th Sympo-
sium on Operating Systems Principles, New York, 1999.

[6] L. Eeckhout, H. Vandierendonck, and K. D. Bosschere.
Workload design: selecting representative program-input
pairs. In Proceedings of International Conference on Parallel
Architectures and Compilation Techniques, Charlottesville,
VA, 2002.

[7] J. Faraway. Practical Regression and Anova in R. July 2002.
[8] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat. Enforing

Performance Isolation across Virtual Machines in Xen. In
Proceedings of the 7th international Middleware Conference,
Melbourne, Australia, 2006

[9] S. Jones, A. Arpaci-Dusseau, and R. Arpaci-Dusseau. Ant-
farm: Tracking Processes in a Virtual Machine Environment.
In Proceedings of USENIX Annual Technical Conference,
June 2006

[10] R. A. Johnson and D. W. Wichern. Applied Multivariate Sta-
tistical Analysis. Prentice Hall, fifth edition, 2002.

[11] K. Hoste, A. Phansalkar, L. Eeckhout, A. Georges, L. K. John,
and K. De Bosschere. Performance prediction based on in-
herent program similarity. In Proceedings of the 15th interna-
tional Conference on Parallel Architectures and Compilation
Techniques, Seattle, Washington, USA, 2006.

[12] I.M. Leslie, D. McAuley, R. Black, T. Roscoe, P.T. Barham,
D. Evers, R. Fairbairns, E. Hyden, The design and implemen-
tation of an operating system to support distributed multimedia
applications. IEEE Journal of Selected Areas in Communica-
tions 14(7), 1996

[13] M. Mesnier, M. Wachs, G. Ganger, Modeling the Relative
Fitness of Storage Devices, Carnegie Mellon University Par-
allel Data Lab Technical Report CMU-PDL-05-106, 2005.

[14] A. Phansalkar and L. K. John. Performance prediction using
program similarity. In Proceedings of the 2006 SPEC
Benchmark Workshop, Jan. 2006.

[15] A. Settle, J. Kihm, A. Janiszewski, and D. Connors. Archi-
tectural Support for Enhanced SMT Job Scheduling. In Pro-
ceedings of the 13th International Conference on Parallel Ar-
chitectures and Compilation Techniques, 2004.

[16] The Apache Software Foundation (http://www.apache.org)
[17] AIM Benchmark (http://sourceforge.net/projects/aimbench)
[18] Cachebench memory benchmark

(http://icl.cs.utk.edu/projects/llcbench/cachebench.html)
[19] FreeBench (http://www.freebench.org/)
[20] IOzone Filesystem Benchmark (http://www.iozone.org)
[21] LMbench - Tools for Performance Analysis

(http://www.bitmover.com/lmbench/)
[22] The Persistence of Vision Raytracer

(http://www.povray.org)
[23] SPEC Benchmark suite (http://www.spec.org)
[24] VMware: Virtual Infrastructure Software

(www.vmware.com)
[25] The Xen™ virtual machine monitor

(http://www.cl.cam.ac.uk/research/srg/netos/xen/)

209

