
Symbolic Robustness 

Analysis 

Rupak Mujumdar & Indranil Saha 

[RTSS 2009] 
 

 

Presented by: 

Sayali Salvi, Saarland University 

Seminar on “Robustness of Hardware and Software Systems” 



Outline 

 Control Systems 

 Robustness 

 Symbolic Robustness Analysis 

 Algorithm and Implementation 

 Limitations 

1 



Control Systems 

3 

Uncertain 

and 

imprecise 

6 

Functional Safety 

Safety-critical systems: a malfunctioning of the system can  
cause significant damage and may endanger human beings.  

Functional safety: freedom from unacceptable risk of physical 
injury or of damage to the health of people either directly or 
indirectly (through damage to property or to the environment). 

Legal regulations require developing and verifying safety-critical 
systems with due diligence, according to the state of the art. 

Safety standards formalize the minimal processes and 
requirements for system development with due diligence.  
Non-compliance is indication for negligence in liability suits. 
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Safety-Critical Embedded Systems 



Robustness 

 We say system is robust, when 
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small perturbations in the system inputs cause only small changes 

in its outputs. 

Controller design 

Controller implementation 

Robust 

Question:  

Is the implementation still Robust? 



Robustness 

Input x1 Output 

δ ε 

Input x2 

Control 

Software 
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System is (δ,ε)-robust in input x1 



Transmission Calculation Example 
int calc_trans_slow_torques (int angle, int speed) 

{ 

    int pressure1, pressure2; 

    int gear, val1, val3, val4; 

    val1 = lookup1 (&(data_table[0][0]), angle); 

    if (3 * speed <= val1) 

        gear = 3; 

    else 

        gear = 4; 

    val3 = lookup2 (&(out1_table[0][0]), gear); 

    pressure1 = val3 * 1000; 

    val4 = lookup2 (&(out2_table[0][0]), gear); 

    pressure2 = val4 * 1000; 

} 

6 

angle val1 

30 41 

40 63 

… … 

gear val3 

1 0 

2 0 

3 1 

4 1 

gear val4 

1 0 

2 0 

3 0 

4 1 

data_table: 

out1_table: 

out2_table: 

angle = 30, speed = 13 

pressure2 = 0 

angle = 30, speed = 14 

pressure2 = 1000 

val1=41 

gear=3 

val4=0 

val1=41 

gear=4 

val4=1 



Robustness Analysis 

 Why is it difficult? 

 huge input space to be tested exhaustively 

 many different code execution paths 

 many control computations based on table lookups 

 Why is it required? 

 Random testing ineffective 

 

 This paper studies robustness analysis for control 

software: using ‘Symbolic Execution’ 
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Symbolic Execution 

 Test generation technique 

 

 Executes program on symbolic inputs 

e.g. angle = ang, speed = sp  

 

 Collects symbolic constraints along each execution path 

e.g. consider 2 paths computing pressure2 in our example 
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Symbolic Execution on  

our example 

9 

int calc_trans_slow_torques (int angle, int speed) 

{ 

    int pressure1, pressure2; 

    int gear, val1, val3, val4; 

    val1 = lookup1 (&(data_table[0][0]), angle); 

    if (3 * speed <= val1) 

        gear = 3; 

    else 

        gear = 4; 

    val3 = lookup2 (&(out1_table[0][0]), gear); 

    pressure1 = val3 * 1000; 

    val4 = lookup2 (&(out2_table[0][0]), gear); 

    pressure2 = val4 * 1000; 

} 

ang <= 30 ∧ val1 = 41 ∧ 3 * 

sp <= val1 ∧ gear = 3 ∧ val4 

= 0 ∧ pressure2 = val4 * 

1000 

Path1 symbolic constraints: 

angle val1 

30 41 

… … 

gear val4 

… … 

3 0 

4 1 

data_table: 

out2_table: 

angle = 30, speed = 13 



Symbolic Execution on  

our example 
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int calc_trans_slow_torques (int angle, int speed) 

{ 

    int pressure1, pressure2; 

    int gear, val1, val3, val4; 

    val1 = lookup1 (&(data_table[0][0]), angle); 

    if (3 * speed <= val1) 

        gear = 3; 

    else 

        gear = 4; 

    val3 = lookup2 (&(out1_table[0][0]), gear); 

    pressure1 = val3 * 1000; 

    val4 = lookup2 (&(out2_table[0][0]), gear); 

    pressure2 = val4 * 1000; 

} 

angle val1 

30 41 

… … 

gear val4 

… … 

3 0 

4 1 

data_table: 

out2_table: 

angle = 30, speed = 14 

Path2 symbolic constraints: 

ang <= 30 ∧ val1 = 41 ∧ 3 * 

sp > val1 ∧ gear = 4 ∧ val4 

= 1 ∧ pressure2 = val4 * 

1000 



Concolic Execution 

 Symbolic testing technique 

 Concolic = Concrete + Symbolic 

 

 

 

 

 

 Symbolic constraints for each explored path at the end 
of concolic execution 
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Concrete i/p 

and 

Symbolic i/p 
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Execution 

Symbolic output 

and path 

constraints 
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New Concrete i/p 

and 

Symbolic i/p 



Concolic Execution on  

our example 
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int calc_trans_slow_torques (int angle, int speed) 

{ 

    int pressure1, pressure2; 

    int gear, val1, val3, val4; 

    val1 = lookup1 (&(data_table[0][0]), angle); 

    if (3 * speed <= val1) 

        gear = 3; 

    else 

        gear = 4; 

    val3 = lookup2 (&(out1_table[0][0]), gear); 

    pressure1 = val3 * 1000; 

    val4 = lookup2 (&(out2_table[0][0]), gear); 

    pressure2 = val4 * 1000; 

} 

Concrete input: angle = 30, speed = 13 

Symbolic input: angle = ang, speed = sp 

 

Symbolic path constraint: 3 * sp <= val1 

Negate the path conditional constraint: 

 

Symbolic path constraint: 3 * sp > val1 

Solve the modified constraints: 

 

New concrete input: angle = 30, speed = 14 

Concrete input: angle = 30, speed = 14 

Symbolic input: angle = ang, speed = sp 

 

Symbolic path constraint: 3 * sp > val1 



Symbolic Robustness Analysis 

 Formulate the optimization problem for above two paths: 

Maximize |pressure2 − pressure2’| 

subject to the constraints: 
 

 1. Path1 symbolic constraints 

 2. Path2 symbolic constraints 

 angle = angle’ 

 |speed − speed’| <= 1 

 Iterate over all path pairs to find the maximum deviation in output 

(pressure2) for a perturbation of 1 unit (δ) in the input (speed). 
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ang <= 30 ∧ val1 = 41 ∧ 3 * sp <= val1 ∧ 

gear = 3 ∧ val4 = 0 ∧ pressure2 = val4 * 

1000 

1. Path1 symbolic constraints: 2. Path2 symbolic constraints: 

ang' <= 30 ∧ val1’ = 41 ∧ 3 * sp’ > val1’ 

∧ gear’ = 4 ∧ val4’ = 1 ∧ pressure2’ = 

val4’ * 1000 



Formal Problem Definition 
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x    : actual input value 

x’   : measured input value 

v    : value of all other input variables 

y    : value of output of program P for input v, x 

y’   : value of output of program P for input v, x’ 

δx  : at most deviation of input variable x 

εyx :maximum deviation in the value of output variable y 

 

 
Program P is (δ,ε)-robust in input x if εyx <=ε when δx<=δ  

constraint ξ ∧ ¬ξe. The property of a satisfying assignment

is that if these inputs are provided at the input statements,

then the new execution will follow the old execution up to

the location , but then take the conditional branch opposite

to the one taken by the old execution, thus ensuring that the

other branch is covered. The satisfying assignment is used

to define a new input for the next execution of the program.

In this way, each path of the program can be traversed.

At the end of concolic execution, we get a set of pairs

e, ξ of symbolic output expressions and path constraints

for each explored path.

IV. ROBUSTNESS ANALYSIS

A. Problem Definition

In this section we formally define the problem of ro-

bustness analysis. Let P = (X , X 0, y, L , i , o, op, E) be

a program. Let us fix an input x ∈ X 0. Let δx denote

the maximum possible uncertainty in measuring input x.

Measurement errors in x can cause the output y to change

in two possible ways: (i) either the program executes along

some new path due to a change in the result of a conditional

dependent on x, (ii) or the program executes along the same

path but y is data-dependent on the value of x. We define the

maximum output sensitivity of y w.r.t. x and δx as follows:

δyx = max
v,x ,x

|y − y |

y = P(v, x)

y = P(v, x )

|x − x | ≤ δx

where x and x denote the actual and measured value of x

respectively, v is the value of all other input variables, and y

and y denote the value of the output of the program for input

v, x and v, x respectively. Informally, δyx is the maximum

possible change in the value of the output y when in the

input of the program, the variable x deviates by at most δx .

A program P is (δ, )-robust with respect to an input x ∈ X 0

if δyx ≤ whenever δx ≤ δ.

B. Algorithm

The algorithm for finding maximum sensitivity of output

y of a program with respect to an input x is presented

in Algorithm IV.1. First, the algorithm performs concolic

execution on the program and collects a set S of pairs e, ξ

of the output symbolic expression e and the path constraint

for each path (line 2).

For each pair e1, ξ1 and e2, ξ2 from S, the algorithm

finds out the maximum deviation in output y when the

input x is bounded by δx and the two execution paths are

assumed to satisfy ξ1 and ξ2. This is done by procedure

find output deviation (line 6) described in the next section.

Finally, the maximum output sensitivity for y w.r.t. input x

is defined as the maximum over all pairs of paths in S of the

deviations. The computation of δyx is interleaved in lines 3

and 7.

Algorithm f i nd output sensi ti vi ty(P, x,δx )1

S = concol ic(P);2

δyx = 0;3

for e1, ξ1 ∈ S do4

for e2, ξ2 ∈ S do5

∆ =6

f i nd output deviati on( e1, ξ1 , e2, ξ2 ,δx );

δyx = max(δyx ,∆ );7

end8

end9

return δyx10

Algorithm IV.1: Algorithm to find out maximum deviation

in output y for perturbation δx in input x in a Program P

C. Finding Maximum Output Deviation

We now describe how the find output deviation func-

tion in Algorithm IV.1 works. The inputs of this function are

two pairs e1, ξ1 and e2, ξ2 from S, and the deviation δx

in the value of x. The function finds the maximum output

deviation when deviation in input x is bounded by δx .This

is done by formulating and solving several maximization

problems.

For a symbolic expression e, let the primed version e

denote the symbolic expression in which every variable α

in e is replaced by a primed copy α . Similarly, for a path

constraint C, let the primed version C denote the same

constraint in which every variable α is replaced by a primed

copy α . For example, the primed version of x + y is x + y

and the primed version of x ≥ 0∧ y = x is x ≥ 0∧ y = x .

We now define the maximization problem. The objective

function is |ei − ej |, which represents the difference between

the symbolic outputs along the two paths (note that ej is

primed).

The constraints of the optimization problem are

ξ1 ∧ ξ2 ∧

z∈X 0 \ { x }

αz = αz ∧ |αx − αx | ≤ δx (3)

The first two conjuncts enforce that the two execution paths

follow the path constraints ξ1 and ξ2 respectively, the third

conjunct z∈X \ { x } αz = αz enforces every input variable

other than x to be equal on the two executions, and the final

constraint |αx − αx | ≤ δx ensures that the deviation in the

input x is bounded by δx .

Thus, the optimization problem is:

maximize |e1 − e2|

s.t . constraints (3)

The optimization problem above may not always be

satisfiable. For example, if ξ1 contains a constraint αz < 0

and ξ2 contains a constraint αz ≥ 0, where z ∈ X and z is

independent from the variable x for which we are measuring

output sensitivity, then constraints (3) is not satisfiable. If the

εyx 



Implementation Algorithm 

Algorithm find_output_sensitivity (P, x,δx) 

S = concolic (P); 

εyx = 0; 

for (e1,ξ1) in S do 

   for (e2,ξ2) in S do 

      Δ = find_output_deviation ((e1,ξ1), (e2,ξ2) , δx); 

      εyx  = max (εyx,Δ); 

   end 

end 

return εyx; 
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• Produces a set of pairs (e,ξ) for 

each explored path 

 e   symbolic output expressions 

ξ   path constraints 

 

• Returns the solution of the 

optimization problem. 

• Returns -1 when constraints can 

not be satisfied for a pair of paths. 



Implementation 

 Concolic execution: Splat 

 Uses the decision procedure STP to solve the path 

constraints to generate inputs for a new execution 

 Is extended to generate the symbolic output expression 

and the path constraints for all program paths 

 Optimization problem solving: Lindo 

 Provides general nonlinear and nonlinear/integer 

optimization problem solving APIs 

 Can detect if a set of constraints is not satisfiable 
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Limitations 

 Limitations in algorithm and implementation: 

 Decision procedure handles fixed point numbers, not 

floating point numbers 

 δx is treated as constant 

 Closed loop systems can not be analyzed 
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Input x1 Output 
δ 

2δ 

Input x2 

Closed Loop 

Control 

Software 

In n iterations: input x1 will be 2nδ apart 



Take Away 

 Robustness analysis of control software program 

 Symbolic technique of test case generation 
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Seminar  
 Robustness analysis of various types of entities: 

 

 Control Software programs 

 General Software programs 

 Sequential circuits 

 Networked systems 

 Cache replacement policies 
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Idea 
 Application of a approach used in robustness analysis of 

sequential circuits to analyze closed loop control 

software: 

 Sensor input variable values : actual and measured  

 Corresponding value sequences of state input variable 

 Corresponding value sequences of output variable 

 Common Suffix Distance: 

 last position of difference = loop iteration number 

                                                 after which small change  

                                                 sensor input is forgotten 
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