
Symbolic Robustness

Analysis

Rupak Mujumdar & Indranil Saha

[RTSS 2009]

Presented by:

Sayali Salvi, Saarland University

Seminar on “Robustness of Hardware and Software Systems”

Outline

 Control Systems

 Robustness

 Symbolic Robustness Analysis

 Algorithm and Implementation

 Limitations

1

Control Systems

3

Uncertain

and

imprecise

6

Functional Safety

Safety-critical systems: a malfunctioning of the system can
cause significant damage and may endanger human beings.

Functional safety: freedom from unacceptable risk of physical
injury or of damage to the health of people either directly or
indirectly (through damage to property or to the environment).

Legal regulations require developing and verifying safety-critical
systems with due diligence, according to the state of the art.

Safety standards formalize the minimal processes and
requirements for system development with due diligence.
Non-compliance is indication for negligence in liability suits.

11

12

Safety-Critical Embedded Systems

Robustness

 We say system is robust, when

4

small perturbations in the system inputs cause only small changes

in its outputs.

Controller design

Controller implementation

Robust

Question:

Is the implementation still Robust?

Robustness

Input x1 Output

δ ε

Input x2

Control

Software

5
System is (δ,ε)-robust in input x1

Transmission Calculation Example
int calc_trans_slow_torques (int angle, int speed)

{

 int pressure1, pressure2;

 int gear, val1, val3, val4;

 val1 = lookup1 (&(data_table[0][0]), angle);

 if (3 * speed <= val1)

 gear = 3;

 else

 gear = 4;

 val3 = lookup2 (&(out1_table[0][0]), gear);

 pressure1 = val3 * 1000;

 val4 = lookup2 (&(out2_table[0][0]), gear);

 pressure2 = val4 * 1000;

}

6

angle val1

30 41

40 63

… …

gear val3

1 0

2 0

3 1

4 1

gear val4

1 0

2 0

3 0

4 1

data_table:

out1_table:

out2_table:

angle = 30, speed = 13

pressure2 = 0

angle = 30, speed = 14

pressure2 = 1000

val1=41

gear=3

val4=0

val1=41

gear=4

val4=1

Robustness Analysis

 Why is it difficult?

 huge input space to be tested exhaustively

 many different code execution paths

 many control computations based on table lookups

 Why is it required?

 Random testing ineffective

 This paper studies robustness analysis for control

software: using ‘Symbolic Execution’

 7

Symbolic Execution

 Test generation technique

 Executes program on symbolic inputs

e.g. angle = ang, speed = sp

 Collects symbolic constraints along each execution path

e.g. consider 2 paths computing pressure2 in our example

8

Symbolic Execution on

our example

9

int calc_trans_slow_torques (int angle, int speed)

{

 int pressure1, pressure2;

 int gear, val1, val3, val4;

 val1 = lookup1 (&(data_table[0][0]), angle);

 if (3 * speed <= val1)

 gear = 3;

 else

 gear = 4;

 val3 = lookup2 (&(out1_table[0][0]), gear);

 pressure1 = val3 * 1000;

 val4 = lookup2 (&(out2_table[0][0]), gear);

 pressure2 = val4 * 1000;

}

ang <= 30 ∧ val1 = 41 ∧ 3 *

sp <= val1 ∧ gear = 3 ∧ val4

= 0 ∧ pressure2 = val4 *

1000

Path1 symbolic constraints:

angle val1

30 41

… …

gear val4

… …

3 0

4 1

data_table:

out2_table:

angle = 30, speed = 13

Symbolic Execution on

our example

10

int calc_trans_slow_torques (int angle, int speed)

{

 int pressure1, pressure2;

 int gear, val1, val3, val4;

 val1 = lookup1 (&(data_table[0][0]), angle);

 if (3 * speed <= val1)

 gear = 3;

 else

 gear = 4;

 val3 = lookup2 (&(out1_table[0][0]), gear);

 pressure1 = val3 * 1000;

 val4 = lookup2 (&(out2_table[0][0]), gear);

 pressure2 = val4 * 1000;

}

angle val1

30 41

… …

gear val4

… …

3 0

4 1

data_table:

out2_table:

angle = 30, speed = 14

Path2 symbolic constraints:

ang <= 30 ∧ val1 = 41 ∧ 3 *

sp > val1 ∧ gear = 4 ∧ val4

= 1 ∧ pressure2 = val4 *

1000

Concolic Execution

 Symbolic testing technique

 Concolic = Concrete + Symbolic

 Symbolic constraints for each explored path at the end
of concolic execution

11

Concrete i/p

and

Symbolic i/p

Symobilc

Execution

Symbolic output

and path

constraints

Constraint

Solver

New Concrete i/p

and

Symbolic i/p

Concolic Execution on

our example

12

int calc_trans_slow_torques (int angle, int speed)

{

 int pressure1, pressure2;

 int gear, val1, val3, val4;

 val1 = lookup1 (&(data_table[0][0]), angle);

 if (3 * speed <= val1)

 gear = 3;

 else

 gear = 4;

 val3 = lookup2 (&(out1_table[0][0]), gear);

 pressure1 = val3 * 1000;

 val4 = lookup2 (&(out2_table[0][0]), gear);

 pressure2 = val4 * 1000;

}

Concrete input: angle = 30, speed = 13

Symbolic input: angle = ang, speed = sp

Symbolic path constraint: 3 * sp <= val1

Negate the path conditional constraint:

Symbolic path constraint: 3 * sp > val1

Solve the modified constraints:

New concrete input: angle = 30, speed = 14

Concrete input: angle = 30, speed = 14

Symbolic input: angle = ang, speed = sp

Symbolic path constraint: 3 * sp > val1

Symbolic Robustness Analysis

 Formulate the optimization problem for above two paths:

Maximize |pressure2 − pressure2’|

subject to the constraints:

 1. Path1 symbolic constraints

 2. Path2 symbolic constraints

 angle = angle’

 |speed − speed’| <= 1

 Iterate over all path pairs to find the maximum deviation in output

(pressure2) for a perturbation of 1 unit (δ) in the input (speed).

13

ang <= 30 ∧ val1 = 41 ∧ 3 * sp <= val1 ∧

gear = 3 ∧ val4 = 0 ∧ pressure2 = val4 *

1000

1. Path1 symbolic constraints: 2. Path2 symbolic constraints:

ang' <= 30 ∧ val1’ = 41 ∧ 3 * sp’ > val1’

∧ gear’ = 4 ∧ val4’ = 1 ∧ pressure2’ =

val4’ * 1000

Formal Problem Definition

14

x : actual input value

x’ : measured input value

v : value of all other input variables

y : value of output of program P for input v, x

y’ : value of output of program P for input v, x’

δx : at most deviation of input variable x

εyx :maximum deviation in the value of output variable y

Program P is (δ,ε)-robust in input x if εyx <=ε when δx<=δ

constraint ξ ∧ ¬ξe. The property of a satisfying assignment

is that if these inputs are provided at the input statements,

then the new execution will follow the old execution up to

the location , but then take the conditional branch opposite

to the one taken by the old execution, thus ensuring that the

other branch is covered. The satisfying assignment is used

to define a new input for the next execution of the program.

In this way, each path of the program can be traversed.

At the end of concolic execution, we get a set of pairs

e, ξ of symbolic output expressions and path constraints

for each explored path.

IV. ROBUSTNESS ANALYSIS

A. Problem Definition

In this section we formally define the problem of ro-

bustness analysis. Let P = (X , X 0, y, L , i , o, op, E) be

a program. Let us fix an input x ∈ X 0. Let δx denote

the maximum possible uncertainty in measuring input x.

Measurement errors in x can cause the output y to change

in two possible ways: (i) either the program executes along

some new path due to a change in the result of a conditional

dependent on x, (ii) or the program executes along the same

path but y is data-dependent on the value of x. We define the

maximum output sensitivity of y w.r.t. x and δx as follows:

δyx = max
v,x ,x

|y − y |

y = P(v, x)

y = P(v, x)

|x − x | ≤ δx

where x and x denote the actual and measured value of x

respectively, v is the value of all other input variables, and y

and y denote the value of the output of the program for input

v, x and v, x respectively. Informally, δyx is the maximum

possible change in the value of the output y when in the

input of the program, the variable x deviates by at most δx .

A program P is (δ,)-robust with respect to an input x ∈ X 0

if δyx ≤ whenever δx ≤ δ.

B. Algorithm

The algorithm for finding maximum sensitivity of output

y of a program with respect to an input x is presented

in Algorithm IV.1. First, the algorithm performs concolic

execution on the program and collects a set S of pairs e, ξ

of the output symbolic expression e and the path constraint

for each path (line 2).

For each pair e1, ξ1 and e2, ξ2 from S, the algorithm

finds out the maximum deviation in output y when the

input x is bounded by δx and the two execution paths are

assumed to satisfy ξ1 and ξ2. This is done by procedure

find output deviation (line 6) described in the next section.

Finally, the maximum output sensitivity for y w.r.t. input x

is defined as the maximum over all pairs of paths in S of the

deviations. The computation of δyx is interleaved in lines 3

and 7.

Algorithm f i nd output sensi ti vi ty(P, x,δx)1

S = concol ic(P);2

δyx = 0;3

for e1, ξ1 ∈ S do4

for e2, ξ2 ∈ S do5

∆ =6

f i nd output deviati on(e1, ξ1 , e2, ξ2 ,δx);

δyx = max(δyx ,∆);7

end8

end9

return δyx10

Algorithm IV.1: Algorithm to find out maximum deviation

in output y for perturbation δx in input x in a Program P

C. Finding Maximum Output Deviation

We now describe how the find output deviation func-

tion in Algorithm IV.1 works. The inputs of this function are

two pairs e1, ξ1 and e2, ξ2 from S, and the deviation δx

in the value of x. The function finds the maximum output

deviation when deviation in input x is bounded by δx .This

is done by formulating and solving several maximization

problems.

For a symbolic expression e, let the primed version e

denote the symbolic expression in which every variable α

in e is replaced by a primed copy α . Similarly, for a path

constraint C, let the primed version C denote the same

constraint in which every variable α is replaced by a primed

copy α . For example, the primed version of x + y is x + y

and the primed version of x ≥ 0∧ y = x is x ≥ 0∧ y = x .

We now define the maximization problem. The objective

function is |ei − ej |, which represents the difference between

the symbolic outputs along the two paths (note that ej is

primed).

The constraints of the optimization problem are

ξ1 ∧ ξ2 ∧

z∈X 0 \ { x }

αz = αz ∧ |αx − αx | ≤ δx (3)

The first two conjuncts enforce that the two execution paths

follow the path constraints ξ1 and ξ2 respectively, the third

conjunct z∈X \ { x } αz = αz enforces every input variable

other than x to be equal on the two executions, and the final

constraint |αx − αx | ≤ δx ensures that the deviation in the

input x is bounded by δx .

Thus, the optimization problem is:

maximize |e1 − e2|

s.t . constraints (3)

The optimization problem above may not always be

satisfiable. For example, if ξ1 contains a constraint αz < 0

and ξ2 contains a constraint αz ≥ 0, where z ∈ X and z is

independent from the variable x for which we are measuring

output sensitivity, then constraints (3) is not satisfiable. If the

εyx

Implementation Algorithm

Algorithm find_output_sensitivity (P, x,δx)

S = concolic (P);

εyx = 0;

for (e1,ξ1) in S do

 for (e2,ξ2) in S do

 Δ = find_output_deviation ((e1,ξ1), (e2,ξ2) , δx);

 εyx = max (εyx,Δ);

 end

end

return εyx;

16

• Produces a set of pairs (e,ξ) for

each explored path

 e symbolic output expressions

ξ path constraints

• Returns the solution of the

optimization problem.

• Returns -1 when constraints can

not be satisfied for a pair of paths.

Implementation

 Concolic execution: Splat

 Uses the decision procedure STP to solve the path

constraints to generate inputs for a new execution

 Is extended to generate the symbolic output expression

and the path constraints for all program paths

 Optimization problem solving: Lindo

 Provides general nonlinear and nonlinear/integer

optimization problem solving APIs

 Can detect if a set of constraints is not satisfiable

17

Limitations

 Limitations in algorithm and implementation:

 Decision procedure handles fixed point numbers, not

floating point numbers

 δx is treated as constant

 Closed loop systems can not be analyzed

18

Input x1 Output
δ

2δ

Input x2

Closed Loop

Control

Software

In n iterations: input x1 will be 2nδ apart

Take Away

 Robustness analysis of control software program

 Symbolic technique of test case generation

19

Seminar
 Robustness analysis of various types of entities:

 Control Software programs

 General Software programs

 Sequential circuits

 Networked systems

 Cache replacement policies

20

Idea
 Application of a approach used in robustness analysis of

sequential circuits to analyze closed loop control

software:

 Sensor input variable values : actual and measured

 Corresponding value sequences of state input variable

 Corresponding value sequences of output variable

 Common Suffix Distance:

 last position of difference = loop iteration number

 after which small change

 sensor input is forgotten

21

