
Sensitivity of Cache Replacement 
Policies 

Presented by Panchali Mukherjee 

Saarland University 

 

Robustness of Hardware and Software Systems 

JAN REINEKE, DANIEL GRUND 

1 



What is a cache? 

Memory unit. 

Conceals latency gap. 

Close to the CPU. 

Can access CPU faster. 

2 



Data found in cache: hit. 

Data not found in cache: miss. 

  Hit rate determines effectiveness. 

3 



What does Cache Miss result in? 

Very high cache miss penalties. 

 

Cache performance influences overall performance. 
 



Worst Case Execution Time 

The maximum length of time a task or set of tasks 

requires on a specific hardware platform. 



Large variance gets introduced into the execution time 

due to: 

 

 Cache misses 

 Pipeline stalls, etc 

6 

Worst-case Execution Time Analysis: 



WCET computation methods: 

 

 Measurement-based timing Analysis 

 Static Analysis. 

7 

Worst-case Execution Time Analysis: 



Static Analysis: 

 Uses abstract model. 

 Computes invariant. 

 Gives upper bound on WCET. 

8 



Static Analysis: Pros 

 Gives good results for simple hardware. 

 Efficient model. 

 Accurate prediction. 

9 



Static Analysis: Cons 

 Complex hardware: error prone and laborious. 

 Inaccurate model. 

 Over-pessimistic result. 

10 



Measurement Timing Analysis: 

 Subset of real hardware states. 

 Gives maximum of execution times measured. 

 Underestimation of WCET. 

11 



Measurement Timing Analysis: Pro 

 Gives good results for both simple and complex 

hardware. 

 Precise estimate. 

 Portable. 

12 



Measurement Timing Analysis: Con 

 May suffer from over-pessimism. 

 Not sound. 

13 



14 

Worst-case Execution Time Analysis: 



Objective: 

Influence of initial hardware state on cache 

effectiveness. 

15 



Associativity: 

The size of a cache set is called the associativity k of 

the cache. 

16 

The index is used to find the set, and the tag helps find the 

block within the set. 



Cache Replacement policies: 

LRU (least-recently-used): The bit that has not been 

used for the longest period of time is replaced. 

 

 

 

 

17 



Cache Replacement policies: 

FIFO (first-in-first-out): The bit that was the first to 

enter the cache is replaced. 

 

 

 

 

18 



Cache Replacement policies: 

PLRU (Pseudo-LRU): Tree-based approximation of 

the LRU policy. 

 

19 



Cache Replacement policies: 

MRU (most-recently-used): 

• One recently-used bit per cache line. 

• Cache line accessed—bit is set. 

• Cache miss—first cache line without set bit selected, 

—block removed, 

—latest recently used bit set to 1. 

—all other bits reset to 0. 

20 



Sensitivity: 

q, q’ : cache states, 

s: access sequence, 

mP(q, s): number of misses, 

hP(q, s): number of hits, 

P: replacement policy used. 

21 



Sensitivity: 

Miss-Sensitivity to State: A policy P is k-miss-
sensitive with additive constant c, if 

    mP(q, s) ≤ k · mP(q' , s) + c  

22 



Sensitivity: 

Hit-Sensitivity to State: A policy P is k-hit-sensitive 
with subtractive constant c, if 

    hP(q, s) ≥ k · hP(q' , s) - c  

23 



Sensitivity: 

Sensitive Ratio: The sensitive miss and hit ratios sp
m 

and sp
h of P are defined as: 

 

sp
m = inf {k | P is k-miss-sensitive} and 

sp
h = sup {k | P is k-hit-sensitive}. 

24 



Compute Sensitive Ratios: 

RELACS: Automatically computes sensitive ratios. 

25 



Compute Sensitive Ratios: 

Transition system: A system whose states are pairs 

of cache states, and whose transitions reflect the 

effect of a memory access on both of the cache 

states. 

 

26 



Compute Sensitive Ratios: 

27 

Sensitive ratios depend on the number of misses (hits) on paths through 

the transition system. 

 



Induced Transition System: 

Induced Transition System: A policy P induces a 

labeled transition system TP = (SP , RP ), where: 

SP = {(q, q' ) | q ∈ CP , q' ∈ CP} , are the states, 

which are pairs of cache states of policy P,  

RP = {((p, q), (mp , mq ), (p' , q')) | (p, q) ∈ SP , a ∈ 

B, 

(p' , q' ) = updateP,P((p, q), <a>) 

(mp , mq) = mP,P((p, q), <a>)} 
28 



Induced Transition System: 

If set of memory blocks infinite, the induced transition 

system is infinitely large. 

Solution: Finite Quotient Structure. 

29 



Merging Equivalent States: 

30 



Merging Equivalent States: 

31 



Quotient Transition System: 

Constructing a Quotient Transition System consists 

of two steps: 

1. The computation of SP 

2. The computation of RP . 

32 



Quotient Transition System: 

33 

Successor 

State 

Total 

States 

Unprocessed 

queue 

(until empty) 

Normalize Normalize 



Quotient Transition System: 

34 

Normalize: Unique representative in the equivalence relation for pairs 

of states. 

Computation of SP 



Quotient Transition System: 

• Computation of RP: 

NORMALIZE(updateP(p,<a>); updateP(q,<a>)) is 

equal for all a. 

 

Computing successors under the finite number of 

accesses. 

35 



Results: 

Sensitivity results for LRU, FIFO, PLRU, and MRU 

at associativity ranging from 2 to 8 is obtained. 

 

The data obtained are precise sensitive ratios. 

 

36 



Results: 

37 

Miss-Sensitivity ratio, k, and additive constant, c, for FIFO, PLRU, and LRU. 

 

Note: MEM indicates the algorithm ran out of memory on a 2gb machine. 

Policies/Associativity 2 3 4 5 6 7 8

LRU 1,2 1,3 1,4 1,5 1,6 1,7 1,8

FIFO 2,2 3,3 4,4 5,5 6,6 7,7 8,8

PLRU 1,2 - ∞ - - ∞ -

MRU 1,2 3,4 5,6 7,8 MEM MEM MEM



Results: 

38 

Hit-Sensitivity ratio k, and subtractive constant c, for FIFO, PLRU, and LRU. 

 

Note: MEM indicates the algorithm ran out of memory on a 2gb machine. 

Policies/Associativity 2 3 4 5 6 7 8

LRU 1,2 1,3 1,4 1,5 1,6 1,7 1,8
FIFO 0,0 0,0 0,0 0,0 0,0 0,0 0,0

PLRU 1,2 - 1/3, 5/3 - - ∞ 1/11, 19/11

MRU 1,2 0,0 0,0 0,0 MEM MEM MEM



  39 

Results: 

LRU is best replacement policy, most robust. 



Open Question: 

When the access sequence is restricted computing 

precise sensitive ratios become difficult. 

 

Computing a quotient transition system, as done in this 

paper becomes improbable. 



Common Ground: 

ROBUSTNESS 




