What is a cache?

- Memory unit.
- Conceals latency gap.
- Close to the CPU.
- Can access CPU faster.
Data found in cache: hit.
Data not found in cache: miss.

- Hit rate determines effectiveness.
What does Cache Miss result in?

- Very high cache miss penalties.
- Cache performance influences overall performance.
Worst Case Execution Time

The maximum length of time a task or set of tasks requires on a specific hardware platform.
Worst-case Execution Time Analysis:

Large variance gets introduced into the execution time due to:

- Cache misses
- Pipeline stalls, etc
Worst-case Execution Time Analysis:

WCET computation methods:

- Measurement-based timing Analysis
- Static Analysis.
Static Analysis:

- Uses abstract model.
- Computes invariant.
- Gives upper bound on WCET.
Static Analysis: Pros

- Gives good results for simple hardware.
- Efficient model.
- Accurate prediction.
Static Analysis: Cons

- Complex hardware: error prone and laborious.
- Inaccurate model.
- Over-pessimistic result.
Measurement Timing Analysis:

- Subset of real hardware states.
- Gives maximum of execution times measured.
- Underestimation of WCET.
Measurement Timing Analysis: Pro

- Gives good results for both simple and complex hardware.
- Precise estimate.
- Portable.
Measurement Timing Analysis: Con

- May suffer from over-pessimism.
- Not sound.
Worst-case Execution Time Analysis:

- Measurements might miss the longest time!
- Static analysis gives safe timing values!
Objective:

Influence of initial hardware state on cache effectiveness.
Associativity:

The size of a cache set is called the associativity k of the cache.

The index is used to find the set, and the tag helps find the block within the set.
Cache Replacement policies:

LRU (least-recently-used): The bit that has not been used for the longest period of time is replaced.
Cache Replacement policies:

FIFO (first-in-first-out): The bit that was the first to enter the cache is replaced.

![Reference string and page frames diagram](image)
Cache Replacement policies:

PLRU (Pseudo-LRU): Tree-based approximation of the LRU policy.
Cache Replacement policies:

MRU (most-recently-used):

• One recently-used bit per cache line.
• Cache line accessed—bit is set.
• Cache miss—first cache line without set bit selected,
 —block removed,
 —latest recently used bit set to 1.
 —all other bits reset to 0.
Sensitivity:

q, q': cache states,

s: access sequence,

$m_P(q, s)$: number of misses,

$h_P(q, s)$: number of hits,

P: replacement policy used.
Sensitivity:

Miss-Sensitivity to State: A policy P is k-miss-sensitive with additive constant c, if

$$m_P(q, s) \leq k \cdot m_P(q', s) + c$$
Sensitivity:

Hit-Sensitivity to State: A policy P is k-hit-sensitive with subtractive constant c, if

$$h_P(q, s) \geq k \cdot h_P(q', s) - c$$
Sensitivity:

Sensitive Ratio: The sensitive miss and hit ratios s_p^m and s_p^h of P are defined as:

$$s_p^m = \inf \{ k \mid P \text{ is } k\text{-miss-sensitive} \} \quad \text{and} \quad s_p^h = \sup \{ k \mid P \text{ is } k\text{-hit-sensitive} \}.$$
Compute Sensitive Ratios:

RELACS: Automatically computes sensitive ratios.
Compute Sensitive Ratios:

Transition system: A system whose states are pairs of cache states, and whose transitions reflect the effect of a memory access on both of the cache states.
Compute Sensitive Ratios:

Sensitive ratios depend on the number of misses (hits) on paths through the transition system.
Induced Transition System:

A policy P induces a labeled transition system $T_P = (S_P, R_P)$, where:

- $S_P = \{(q, q') \mid q \in C_P, q' \in C_P\}$, are the states, which are pairs of cache states of policy P,

- $R_P = \{((p, q), (m_p, m_q), (p', q')) \mid (p, q) \in S_P, a \in B, (p', q') = update_{P,P}((p, q), <a>)\}$

- $(m_p, m_q) = m_{P,P}((p, q), <a>)$
Induced Transition System:

If set of memory blocks infinite, the induced transition system is infinitely large.

Solution: Finite Quotient Structure.
Merging Equivalent States:

(a) Dashed lines connect equivalent states according to the equivalence relation \approx.
Merging Equivalent States:
Quotient Transition System:

Constructing a Quotient Transition System consists of two steps:

1. The computation of S_P
2. The computation of R_P.
Quotient Transition System:

1. **Total States**
2. **Unprocessed queue (until empty)**
3. **Successor State**
Quotient Transition System:

Computation of S_P

Normalize: Unique representative in the equivalence relation for pairs of states.
Quotient Transition System:

- **Computation of R_P:**
 - $\text{NORMALIZE}(\text{update}_p(p,<a>); \text{update}_p(q,<a>))$ is equal for all a.

- Computing successors under the finite number of accesses.
Results:

- Sensitivity results for LRU, FIFO, PLRU, and MRU at associativity ranging from 2 to 8 is obtained.

- The data obtained are precise sensitive ratios.
Results:

<table>
<thead>
<tr>
<th>Policies/Associativity</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRU</td>
<td>1,2</td>
<td>1,3</td>
<td>1,4</td>
<td>1,5</td>
<td>1,6</td>
<td>1,7</td>
<td>1,8</td>
</tr>
<tr>
<td>FIFO</td>
<td>2,2</td>
<td>3,3</td>
<td>4,4</td>
<td>5,5</td>
<td>6,6</td>
<td>7,7</td>
<td>8,8</td>
</tr>
<tr>
<td>PLRU</td>
<td>1,2</td>
<td>-</td>
<td>∞</td>
<td>-</td>
<td>-</td>
<td>∞</td>
<td>-</td>
</tr>
<tr>
<td>MRU</td>
<td>1,2</td>
<td>3,4</td>
<td>5,6</td>
<td>7,8</td>
<td>MEM</td>
<td>MEM</td>
<td>MEM</td>
</tr>
</tbody>
</table>

Miss-Sensitivity ratio, k, and additive constant, c, for FIFO, PLRU, and LRU.

Note: MEM indicates the algorithm ran out of memory on a 2gb machine.
Results:

<table>
<thead>
<tr>
<th>Policies/Associativity</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRU</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
</tr>
<tr>
<td>FIFO</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PLRU</td>
<td>1.2</td>
<td>-</td>
<td>1/3, 5/3</td>
<td>-</td>
<td>-</td>
<td>∞</td>
<td>1/11, 19/11</td>
</tr>
<tr>
<td>MRU</td>
<td>1.2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>MEM</td>
<td>MEM</td>
<td>MEM</td>
</tr>
</tbody>
</table>

Hit-Sensitivity ratio k, and subtractive constant c, for FIFO, PLRU, and LRU.

Note: MEM indicates the algorithm ran out of memory on a 2gb machine.
Results:

LRU is best replacement policy, most robust.
Open Question:

When the access sequence is restricted computing precise sensitive ratios become difficult.

Computing a quotient transition system, as done in this paper becomes improbable.
Common Ground:

ROBUSTNESS
Thank you!