UNIVERSITAT
DES
SAARLANDES

Continuity and Robustness of Programs

Seminar: Robustness of Hardware and Software Systems
Prof. Dr.-Ing. Jan Reineke

Markus Schneider

Saarbriicken, February 21, 2014

caches

& y o
o -@3 e E @gﬁ_‘)

B a o5 o “ip
L5 e LEN
® »” ROBUSTNESS
oI)
@ 8 _
Lipschitz f s §
continuity ’
@
oF i § %
o
. . o . 2
continuity)
&
s & N networked
o4 : systems
o <& 5,
(53 g“
@
(3
< ¥
oy @B (delta,epsilon)-
robustness A—
e = B G5 .

o G‘@} 1 5D ﬁ‘% ﬁ‘ﬁ’

safety-critical systems * T .. em T g 0 e T T

safety-critical systems

s

caches

& y o
o -@3 e E @gﬁ_‘)

B a o5 o “ip
L5 e LEN
® »” ROBUSTNESS
oI)
@ 8 _
Lipschitz f s §
continuity ’
@
oF i § %
o
. . o . 2
continuity)
&
s & N networked
o4 : systems
o <& 5,
(53 g“
@
(3
< ¥
oy @B (delta,epsilon)-
robustness A—
e = B G5 .

o G‘@} 1 5D ﬁ‘% ﬁ‘ﬁ’

safety-critical systems * T .. em T g 0 e T T

continuity

NS)
S 0=
S M
Y 2
So0e P
SN ..','-Pq
sy
L =

A Necessary Tool: Metrics

» We consider a program as the mathematical function that it
implements.

» To be able to talk about continuity we have to define a
metric for each datatype.

» Examples of metrics:

» integer and real, associated with the Euclidean metric

d(x,y) = |x =y

» integer arrays and real arrays, associated with the maximum
norm

d(A1, A2) = Loo(Ar, A2) = max(|Asli] — Ao[i]])

Closeness of Program States

Continuity analysis of programs requires a definition of a
“distance” between two program states.

Given two states o and ¢’ € £(P) and any € > 0, we define:

» o and ¢’ are e-close with respect to variable x; and write
oo & do(i),d' (i) <e

» o' is an e-perturbation of o with respect to variable x; and
write

0 =, o = o R i o' ANYj#i:0(j)=0"())

Continuity of a Program

Well-known e-)-Definition of Continuous Functions:
A function f : D — R is continuous at a point x € D, if

Ve>030>0VyeD: |x—y|<d=|f(x)—f(y) <e

Continuity of a Program:
A program P is continuous at a state o with respect to an input
variable x; and an output variable Xx;, if

Ve> 035 >0Vo € (P): 0 =5;0 = [P](c) =, [P](c)

Verifying Continuity
Breaking down a program into its syntactic substructures we get a
set of inference rules of the style

P is SKIP or x := e
b = Cont(P,In, Out)

to derive continuity judgements.

Disallowing divisions the critical statements are conditional
branches.

» The branches have to be output-equivalent at the decision
boundary of the branch.

- if x > 2 then

1
y.—E'X

1

2:

3: else
4: y:=—bx+411
5: end if

L1

pscC

CcoO !

ntinl,:;ctz
y

S *;!:!&
o e
e
[(55
a7
\] ‘-‘ if‘.;‘
. 250
G '.:;;‘

Lipschitz Continuity of a Program

Definition of Lipschitz continuous Functions:
A function f : D — R is Lipschitz continuous, if there is a constant
K so that any +e-change to x can change f(x) at most by +K - e.

Lipschitz Continuity of a Program:

Let K : N — R>q be a function that takes the size of variable x; as
its input. A program P is K-Lipschitz with respect to an input
variable x; and an output variable x;, if Vo,o’ € £(P) and Ve > 0

o =ci o' A(lle()l] = llo’(DIl) = [PI(0) ~k-e; [PI(c")

where K only depends on the size of o(i). The size of a variable v
s defined as

» ||v]| :=1, if v is an integer or a real,

» ||v]| := N, if v is an array of size N.

Robustness of Programs

For Lipschitz continuous programs we can state:

» The output changes proportionally to any change on the
Inputs.

» The upper bound K - € on the output changes does not
depend on the values of the input variables.

— The program behaves predictably on uncertain inputs.

A program is called robust, if it is K-Lipschitz for some
Lipschitz constant K.

Verifying Lipschitz Continuity

The sequence of assignment or SKIP-statements that P executes
on some input is called a control flow path of P.

Let x; be the input and x; be the output variable of our program.

Lipschitz continuity of a program is proven by establishing that
1. P is continuous in all states w.r.t. input x; and output X;.

2. Each control flow path of P is K-Lipschitz w.r.t. input x; and
output X;.

What remains to show is step 2. In doing so, we derive a set of
Lipschitz matrices for the given program.

Conclusion for this Approach

» We asked for a theory about robustness of programs to
uncertainty.

» Lipschitz continuity is an adequate answer to this question.
It Is a strong property.

» Weak points:

» |s it satisfactory to live without divisions?

» The degree of automation remains unclear.

» No reasonable handling of discrete input data.
Not applicable to reactive or concurrent systems.

caches

& y o
o -@3 e E @gﬁ_‘)

B a o5 o “ip
L5 e LEN
® »” ROBUSTNESS
oI)
@ 8 _
Lipschitz f s §
continuity ’
@
oF i § %
o
. . o . 2
continuity)
&
s & N networked
o4 : systems
o <& 5,
(53 g“
@
(3
< ¥
oy @B (delta,epsilon)-
robustness A—
e = B G5 .

o G‘@} 1 5D ﬁ‘% ﬁ‘ﬁ’

safety-critical systems * T .. em T g 0 e T T

RO
5
"3' 3:‘ s "t‘.
G S0
s 58
Symbolic Robustness Analysis
e 9300,
(delta,epsilon)-robustness w.r.t. variable x: ? 3}:‘:}’
) : Saar

r at most by epsilon if the ir

(delta,epsilon)-
robustness

Symbolic Robustness Analysis

(delta,epsilon)-robustness w.r.t. variable x:

The outputs differ at most by epsilon if the Input
variable x is perturbed at most by delta (and all other
variables remain unchanged).

weak points:

- How to choose the parameter delta?
- No direct adaption to closed loop systems,

- Floating-point numbers and non-linear arithmetic
cannot pe handled.

caches

& y o
o -@3 e E @gﬁ_‘)

B a o5 o “ip
L5 e LEN
® »” ROBUSTNESS
oI)
@ 8 _
Lipschitz f s §
continuity ’
@
oF i § %
o
. . o . 2
continuity)
&
s & N networked
o4 : systems
o <& 5,
(53 g“
@
(3
< ¥
oy @B (delta,epsilon)-
robustness A—
e = B G5 .

o G‘@} 1 5D ﬁ‘% ﬁ‘ﬁ’

safety-critical systems * T .. em T g 0 e T T

Robustness of Networked Systems

(delta,epsilon)-robustness of a networked system:
Sutput differs at rrost by epsilon if the rumber o

1 the network is

mternal channel pcerturbations

s =als 1=lta

DoLUNC

weak points:
Only internal channe

What about u

ne

tworked
ystems

Robustness of Networked Systems

(delta,epsilon)-robustness of a networked system:

The output differs at most by epsilon if the number of
internal channel perturbations in the network is
bounded by delta

weak points:

- Only internal channel perturtbations are considered
What about uncertain input data”

- Input and output are sequences of symbols. What
apout NnuMpers?

caches

& y o
o -@3 e E @gﬁ_‘)

B a o5 o “ip
L5 e LEN
® »” ROBUSTNESS
oI)
@ 8 _
Lipschitz f s §
continuity ’
@
oF i § %
o
. . o . 2
continuity)
&
s & N networked
o4 : systems
o <& 5,
(53 g“
@
(3
< ¥
oy @B (delta,epsilon)-
robustness A—
e = B G5 .

o G‘@} 1 5D ﬁ‘% ﬁ‘ﬁ’

safety-critical systems * T .. em T g 0 e T T

‘un’

"™
800"

““.s

”

)

—
Cache replacement policies

Replacement policies ask:
Sensitivity of a palicy:

(rel-rabustress of a palicy:

competitive analysis

(rc)-competitiveness of a policy:

A
“--;i apasd

<
as 48

et

Cache replacement policies

Replacement policies ask:

Which memory block should we replace upon a
cache miss?

Sensitivity of a policy:
To what extent does the execution history influence
the number of cache hits and cache misses?

(r,c)-robustness of a policy:

et Als) be the number of cache misses on input
sequence s. Whenever dist(s1.s2) <= delta for a fixed
delta. it holds that

AlST) <=1 " Als2) + C

competitive analysis

Analyze the performance of an online algorithm
compared to the optimal offline algorithm,

(r,c)-competitiveness of a policy:
~or all Input sequences s it holds that

Als) <=1 " OFT(s) +C
where OPT Is the optimal offline algorithm

caches

& y o
o -@3 e E @gﬁ_‘)

B a o5 o “ip
L5 e LEN
® »” ROBUSTNESS
oI)
@ 8 _
Lipschitz f s §
continuity ’
@
oF i § %
o
. . o . 2
continuity)
&
s & N networked
o4 : systems
o <& 5,
(53 g“
@
(3
< ¥
oy @B (delta,epsilon)-
robustness A—
e = B G5 .

o G‘@} 1 5D ﬁ‘% ﬁ‘ﬁ’

safety-critical systems * T .. em T g 0 e T T

caches

& y o
o -@3 e E @gﬁ_‘)

B a o5 o “ip
L5 e LEN
® »” ROBUSTNESS
oI)
@ 8 _
Lipschitz f s §
continuity ’
@
oF i § %
o
. . o . 2
continuity)
&
s & N networked
o4 : systems
o <& 5,
(53 g“
@
(3
< ¥
oy @B (delta,epsilon)-
robustness A—
e = B G5 .

o G‘@} 1 5D ﬁ‘% ﬁ‘ﬁ’

safety-critical systems * T .. em T g 0 e T T

caches

. Ch e@® G E ~
% ct R s o
: =~ ROBUSTNESS
o N
5%' & 8 % & .
Lipschitz s # ; 8 s "
continuity P <
; ‘ &z &
continuity .
e B % networked

&
* systems

o
%
®
#
L]
g o
L
%
<
L=

robustness

- [°%:]
g
5, & am C o o g o

safety-critical systems * | .o 2 o » e T ¥ e T

L
oz et 4 o

&
(delta,epsilon)- ‘ A~
V o
O

a i

Thanks for your attention!

Literature

[4 Chaudhuri, S.,Gulwani, S. & Lublinerman, R. (2010).
Continuity Analysis of Programs. POPL, 57-70.

Chaudhuri, S., Gulwani, S., Navidpour, S. & Lublinerman, R.
(2011). Proving Programs Robust. FSE, 102-112.

Chaudhuri, S.,Gulwani, S. & Lublinerman, R. (2012).
Continuity and Robustness of Programs. CACM, 107-115.

Majumdar, R. and Saha, I. (2009). Symbolic Robustness
Analysis. RTSS.

Reineke, J. and Grund, D. (2013). Sensitivity of cache
replacement policies. ACM Transactions on Embedded
Computing Systems (TECS).

[4 Samanta, R., Deshmukh, J., Chaudhuri, S. (2013). Robustness
Analysis of Networked Systems. VMCAL.

)) & &

Image Sources

http://wuw.topwerte.info/Flugzeug. jpg
http://media2.giga.de/2013/11/WLAN. jpg

http://festplatte-intern.de/wp-content/uploads/
festplatte-intern.gif

http://wuw.cicero.de/sites/default/files/field/image/
boerse_0. jpg

http://www.topwerte.info/Flugzeug.jpg
http://media2.giga.de/2013/11/WLAN.jpg
http://festplatte-intern.de/wp-content/uploads/festplatte-intern.gif
http://festplatte-intern.de/wp-content/uploads/festplatte-intern.gif
http://www.cicero.de/sites/default/files/field/image/boerse_0.jpg
http://www.cicero.de/sites/default/files/field/image/boerse_0.jpg

