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A Necessary Tool: Metrics

» We consider a program as the mathematical function that it
implements.

» To be able to talk about continuity we have to define a
metric for each datatype.

» Examples of metrics:

» integer and real, associated with the Euclidean metric

d(x,y) = |x =y

» integer arrays and real arrays, associated with the maximum
norm

d(A1, A2) = Loo(Ar, A2) = max(|Asli] — Ao[i]])




Closeness of Program States

Continuity analysis of programs requires a definition of a
“distance” between two program states.

Given two states o and ¢’ € £(P) and any € > 0, we define:

» o and ¢’ are e-close with respect to variable x; and write
oo & do(i),d' (i) <e

» o' is an e-perturbation of o with respect to variable x; and
write

0 =, o = o R i o' ANYj#i:0(j)=0"())




Continuity of a Program

Well-known e-)-Definition of Continuous Functions:
A function f : D — R is continuous at a point x € D, if

Ve>030>0VyeD: |x—y|<d=|f(x)—f(y) <e

Continuity of a Program:
A program P is continuous at a state o with respect to an input
variable x; and an output variable Xx;, if

Ve> 035 >0Vo € (P): 0 =5;0 = [P](c) =, [P](c)




Verifying Continuity
Breaking down a program into its syntactic substructures we get a
set of inference rules of the style

P is SKIP or x := e
b = Cont(P,In, Out)

to derive continuity judgements.

Disallowing divisions the critical statements are conditional
branches.

» The branches have to be output-equivalent at the decision
boundary of the branch.

- if x > 2 then

1
y.—E'X

1

2:

3: else
4: y:=—bx+411
5: end if
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Lipschitz Continuity of a Program

Definition of Lipschitz continuous Functions:
A function f : D — R is Lipschitz continuous, if there is a constant
K so that any +e-change to x can change f(x) at most by +K - e.

Lipschitz Continuity of a Program:

Let K : N — R>q be a function that takes the size of variable x; as
its input. A program P is K-Lipschitz with respect to an input
variable x; and an output variable x;, if Vo,o’ € £(P) and Ve > 0

o =ci o' A(lle()l] = llo’(DIl) = [PI(0) ~k-e; [PI(c")

where K only depends on the size of o(i). The size of a variable v
s defined as

» ||v]| :=1, if v is an integer or a real,

» ||v]| := N, if v is an array of size N.




Robustness of Programs

For Lipschitz continuous programs we can state:

» The output changes proportionally to any change on the
Inputs.

» The upper bound K - € on the output changes does not
depend on the values of the input variables.

— The program behaves predictably on uncertain inputs.

A program is called robust, if it is K-Lipschitz for some
Lipschitz constant K.




Verifying Lipschitz Continuity

The sequence of assignment or SKIP-statements that P executes
on some input is called a control flow path of P.

Let x; be the input and x; be the output variable of our program.

Lipschitz continuity of a program is proven by establishing that
1. P is continuous in all states w.r.t. input x; and output X;.

2. Each control flow path of P is K-Lipschitz w.r.t. input x; and
output X;.

What remains to show is step 2. In doing so, we derive a set of
Lipschitz matrices for the given program.




Conclusion for this Approach

» We asked for a theory about robustness of programs to
uncertainty.

» Lipschitz continuity is an adequate answer to this question.
It Is a strong property.

» Weak points:

» |s it satisfactory to live without divisions?

» The degree of automation remains unclear.

» No reasonable handling of discrete input data.
Not applicable to reactive or concurrent systems.
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Symbolic Robustness Analysis

(delta,epsilon)-robustness w.r.t. variable x:

The outputs differ at most by epsilon if the Input
variable x is perturbed at most by delta (and all other
variables remain unchanged).

weak points:

- How to choose the parameter delta?
- No direct adaption to closed loop systems,

- Floating-point numbers and non-linear arithmetic
cannot pe handled.
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Robustness of Networked Systems

(delta,epsilon)-robustness of a networked system:

The output differs at most by epsilon if the number of
internal channel perturbations in the network is
bounded by delta

weak points:

- Only internal channel perturtbations are considered
What about uncertain input data”

- Input and output are sequences of symbols. What
apout NnuMpers?
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Cache replacement policies

Replacement policies ask:

Which memory block should we replace upon a
cache miss?

Sensitivity of a policy:
To what extent does the execution history influence
the number of cache hits and cache misses?

(r,c)-robustness of a policy:

et Als) be the number of cache misses on input
sequence s. Whenever dist(s1.s2) <= delta for a fixed
delta. it holds that

AlST) <=1 " Als2) + C




competitive analysis

Analyze the performance of an online algorithm
compared to the optimal offline algorithm,

(r,c)-competitiveness of a policy:
~or all Input sequences s it holds that

Als) <=1 " OFT(s) +C
where OPT Is the optimal offline algorithm
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Thanks for your attention!
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