Continuity and Robustness of Programs
Seminar: Robustness of Hardware and Software Systems
Prof. Dr.-Ing. Jan Reineke

Markus Schneider

Saarbrücken, February 21, 2014
safety-critical systems
continuity
A Necessary Tool: Metrics

- We consider a program as the mathematical function that it implements.
- To be able to talk about continuity we have to define a metric for each datatype.
- Examples of metrics:
 - integer and real, associated with the Euclidean metric
 \[
 d(x, y) = |x - y|
 \]
 - integer arrays and real arrays, associated with the maximum norm
 \[
 d(A_1, A_2) = L_\infty(A_1, A_2) = \max_i(|A_1[i] - A_2[i]|)
 \]
Closeness of Program States

Continuity analysis of programs requires a definition of a “distance” between two program states.

Given two states σ and $\sigma' \in \Sigma(P)$ and any $\epsilon > 0$, we define:

- σ and σ' are ϵ-close with respect to variable x_i and write
 \[\sigma \approx_{\epsilon,i} \sigma' \iff d(\sigma(i), \sigma'(i)) < \epsilon \]

- σ' is an ϵ-perturbation of σ with respect to variable x_i and write
 \[\sigma \equiv_{\epsilon,i} \sigma' \iff \sigma \approx_{\epsilon,i} \sigma' \land \forall j \neq i : \sigma(j) = \sigma'(j) \]
Continuity of a Program

Well-known ε-δ-Definition of Continuous Functions:
A function $f : D \rightarrow \mathbb{R}$ is continuous at a point $x \in D$, if

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in D : \ |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$$

Continuity of a Program:
A program P is continuous at a state σ with respect to an input variable x_i and an output variable x_j, if

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall \sigma' \in \Sigma(P) : \ \sigma \equiv_{\delta,i} \sigma' \Rightarrow [P](\sigma) \approx_{\varepsilon,j} [P](\sigma')$$
Verifying Continuity

Breaking down a program into its syntactic substructures we get a set of inference rules of the style

\[
\frac{P \text{ is SKIP or } x := e}{b \vdash \text{Cont}(P, \text{In, Out})}
\]

to derive continuity judgements.

Disallowing divisions the critical statements are conditional branches.

- The branches have to be output-equivalent at the decision boundary of the branch.

```
1: if \( x > 2 \) then
2:     y := \( \frac{1}{2} \cdot x \)
3: else
4:     y := \(-5x + 11\)
5: end if
```
Lipschitz
continuity
Lipschitz Continuity of a Program

Definition of Lipschitz continuous Functions:
A function $f : D \rightarrow \mathbb{R}$ is Lipschitz continuous, if there is a constant K so that any $\pm \epsilon$-change to x can change $f(x)$ at most by $\pm K \cdot \epsilon$.

Lipschitz Continuity of a Program:
Let $K : \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$ be a function that takes the size of variable x_i as its input. A program P is K-Lipschitz with respect to an input variable x_i and an output variable x_j, if $\forall \sigma, \sigma' \in \Sigma(P)$ and $\forall \epsilon > 0$

$$\sigma \equiv_{\epsilon,i} \sigma' \wedge (||\sigma(i)|| = ||\sigma'(i)||) \Rightarrow [P](\sigma) \approx_{K,\epsilon,j} [P](\sigma')$$

where K only depends on the size of $\sigma(i)$. The size of a variable v is defined as

- $||v|| := 1$, if v is an integer or a real,
- $||v|| := N$, if v is an array of size N.
Robustness of Programs

For Lipschitz continuous programs we can state:

- The output changes proportionally to any change on the inputs.
- The upper bound $K \cdot \epsilon$ on the output changes does not depend on the values of the input variables.

\rightarrow The program behaves predictably on uncertain inputs.

A program is called robust, if it is K-Lipschitz for some Lipschitz constant K.
Verifying Lipschitz Continuity

The sequence of assignment or SKIP-statements that P executes on some input is called a control flow path of P.

Let x_j be the input and x_i be the output variable of our program.

Lipschitz continuity of a program is proven by establishing that

1. P is continuous in all states w.r.t. input x_j and output x_i.
2. Each control flow path of P is K-Lipschitz w.r.t. input x_j and output x_i.

What remains to show is step 2. In doing so, we derive a set of Lipschitz matrices for the given program.
Conclusion for this Approach

- We asked for a theory about robustness of programs to uncertainty.
- **Lipschitz continuity** is an adequate answer to this question. It is a strong property.

Weak points:
- Is it satisfactory to live without divisions?
- The degree of automation remains unclear.
- No reasonable handling of discrete input data.
- Not applicable to reactive or concurrent systems.
Symbolic Robustness Analysis

(δ, ε)-robustness w.r.t. variable x:
The outputs differ at most by ε if the input variable x is perturbed at most by δ (and all other variables remain unchanged).

Weak points:
- How to choose the parameter δ?
- No direct adaption to closed loop systems.
- Floating-point numbers and non-linear arithmetic cannot be handled.
Symbolic Robustness Analysis

\((\delta, \epsilon)\)-robustness w.r.t. variable \(x\):

The outputs differ at most by \(\epsilon\) if the input variable \(x\) is perturbed at most by \(\delta\) (and all other variables remain unchanged).

weak points:
- How to choose the parameter \(\delta\)?
- No direct adaption to closed loop systems.
- Floating-point numbers and non-linear arithmetic cannot be handled.
Robustness of Networked Systems

(delta,epsilon)-robustness of a networked system:
The output differs at most by epsilon if the number of internal channel perturbations in the network is bounded by delta.

Weak points:
- Only internal channel perturbations are considered. What about uncertain input data?
- Input and output are sequences of symbols. What about numbers?
Robustness of Networked Systems

(delta, epsilon)-robustness of a networked system:
The output differs at most by epsilon if the number of internal channel perturbations in the network is bounded by delta.

weak points:
- Only internal channel perturbations are considered. What about uncertain input data?
- Input and output are sequences of symbols. What about numbers?
caches

Cache replacement policies

- Optimal replacement policy
 - Replace the item that will not be re-accessed in the future.
- Greedy policy
 - Minimize the number of cache misses.
- Least Recently Used (LRU)
 - Replace the least recently used item.

Competitive analysis

- Analyze the performance of an online algorithm compared to the optimum offline algorithm.
- Competitive analysis of a policy
 - For all input sequences, the ratio of the cost of the algorithm to the cost of the optimum offline algorithm.

Let and OPT be the optimal offline algorithm.
Cache replacement policies

Replacement policies ask:
Which memory block should we replace upon a cache miss?

Sensitivity of a policy:
To what extent does the execution history influence the number of cache hits and cache misses?

(r,c)-robustness of a policy:
Let $A(s)$ be the number of cache misses on input sequence s. Whenever $\text{dist}(s_1,s_2) \leq \delta$ for a fixed δ, it holds that

$$A(s_1) \leq r \times A(s_2) + c$$
competitive analysis

Analyze the performance of an online algorithm compared to the optimal offline algorithm.

(r,c)-competitiveness of a policy:
For all input sequences s it holds that
\[A(s) \leq r \times OPT(s) + c \]
where OPT is the optimal offline algorithm.
Robustness

- Caches
- Lipschitz continuity
- Continuity
- (delta, epsilon)-robustness
- Networked systems
- Safety-critical systems
Thanks for your attention!

Image Sources

http://www.topwerte.info/Flugzeug.jpg
http://media2.giga.de/2013/11/WLAN.jpg
http://www.cicero.de/sites/default/files/field/image/boerse_0.jpg