Verification of Real-Time Systems
Numerical Abstractions

Jan Reineke

Advanced Lecture, Summer 2015
Recap: From Local to Global Correctness: Kleene Iteration

Idea for Correctness: Abstract Interpretation Cousot, Cousot 1977

Establish a description relation Δ between the concrete values and their descriptions with:

$$x \Delta a_1 \land a_1 \sqsubseteq a_2 \Rightarrow x \Delta a_2$$

Concretization: $\gamma a = \{ x | x \Delta a \}$

// returns the set of described values

Abstract Domain

Concrete Domain
Recap: Fixpoint Transfer Theorem

Let \((L, \leq)\) and \((L^\#, \leq^\#)\) be two lattices, \(\gamma : L^\# \to L\) a monotone function, and \(F : L \to L\) and \(F^\# : F^\# \to F^\#\) two monotone functions, with

\[
\forall l^\# \in L^\# : \gamma(F^#(l^#)) \geq F(\gamma(l^#)).
\]

Then:

\[
lfp F \leq \gamma(lfp F^\#).
\]
Approximations of an infinite set of points:

\[\{ \ldots, (19, 77), \ldots, (20, 03), \ldots \} \]
Overview: Numerical Abstractions
Signs (Cousot & Cousot, 1979)

Approximations of an infinite set of points: from above

\[x \leq 19; y \leq 77; x \geq 20; y \geq 03; x \geq ?; y \geq ? \]

From Below: dual combinations.

Trivial for finite states (liveness model-checking), more difficult for infinite states (variant functions).

Effective computable approximations of an infinite set of points.

Overview: Numerical Abstractions

Intervals (Cousot & Cousot, 1976)

Octagons

Polyhedra

Simple congruences

Overview: Numerical Abstractions
Octagons (Mine, 2001)

Effective computable approximations of an infinite set of points;

\begin{align*}
\begin{cases}
1 \leq x \leq 9 \\
x + y \leq 77 \\
1 \leq y \leq 9 \\
x - y \leq 99
\end{cases}
\end{align*}

\[x \geq y \]
Overview: Numerical Abstractions

Polyhedra (Cousot & Halbwachs, 1978)

Effective computable approximations of an infinite set of points;

\[\begin{align*}
19x + 77y &\leq 2004 \\
20x + 03y &\geq 0
\end{align*} \]

\[\text{Expensive...} \]
Overview: Numerical Abstractions

Simple and Linear Congruences (Granger, 1989+1991)

Effective computable approximations of an infinite set of points;

Octagons

\[\begin{align*}
& x \not\equiv 1 \mod 2 \\
& x \equiv 0 \mod 2 \\
& \begin{cases}
 x = 19 \mod 77 \\
 y = 20 \mod 99
\end{cases}
\]

\[\begin{align*}
& 1x + 9y \equiv 7 \mod 8 \\
& 2x - 1y \equiv 9 \mod 9
\end{align*} \]
Numerical Abstractions

Which abstraction is the most precise?

Depends on questions you want to answer!
Numerical Abstractions

Which abstraction is the most precise?

Depends on questions you want to answer!
Partial Order of Abstractions

- Polyhedra
 - Octagons
 - Intervals
 - Constants
 - Signs
 - Linear Congruences
 - Simple Congruences
 - Parity
Partial Order of Abstractions

Relational domains

- Polyhedra
- Octagons
- Linear Congruences
- Intervals
- Simple Congruences
- Constants
- Signs
- Parity

Independent attribute/non-relational domains
Characteristics of Non-relational Domains

- Non-relational/independent attribute abstraction:
 - Abstract each variable separately
 \[(\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\gamma} (\text{NUMERICAL}, \sqsubseteq) \]
 - Maintains no relations between variable values
- Can be lifted to an abstraction of valuations of multiple variables in the expected way:
 \[(\mathcal{P}(\text{Vars} \rightarrow \mathbb{Z}), \subseteq) \xrightarrow{\gamma_1} (\text{Vars} \rightarrow \mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\gamma_2} (\text{Vars} \rightarrow \text{NUMERICAL}, \sqsubseteq) \]

\[\alpha_2(f) := \lambda x \in \text{Vars}.\alpha(f(x)) \quad \gamma_2(f^\#) := \lambda x \in \text{Vars}.\gamma(f^\#(x)) \]
The Interval Domain

Abstracts sets of values by enclosing interval

\[\text{Interval} = \{ [l, u] \mid l \leq u, l \in \mathbb{Z} \cup \{ -\infty \}, u \in \mathbb{Z} \cup \{ \infty \}\} \cup \{ \bot \} \]

where \(\leq \) is appropriately extended from \(\mathbb{Z} \times \mathbb{Z} \) to \((\mathbb{Z} \cup \{ -\infty \}) \times (\mathbb{Z} \cup \{ \infty \}) \)

Intervals are ordered by inclusion:

\[\bot \sqsubseteq x \quad \forall x \in \text{Interval} \]

\[[l, u] \sqsubseteq [l', u'] \text{ if } l' \leq l \land u \leq u' \]

\((\text{Interval}, \sqsubseteq)\) forms a complete lattice.
Concretization and Abstraction of Intervals

- **Concretization:**

 \[\gamma(\bot) = \emptyset \]

 \[\gamma([l, u]) = \{ n \in \mathbb{Z} \mid l \leq n \leq u \} \]

- **Abstraction:**

 \[\alpha(\emptyset) = \bot \]

 \[\alpha(S) = [\inf S, \sup S] \]

They form a Galois connection.
Interval Arithmetic

Calculating with Intervals:

\[
\begin{align*}
[a, b] + [c, d] &= [a + c, b + d] \\
[a, b] - [c, d] &= [a - d, b - c] \\
[a, b] \times [c, d] &= \min(ac, ad, bc, bd), \max(ac, ad, bc, bd) \\
[a, b] \div [c, d] &= [a, b] \times \frac{1}{d}, \frac{1}{c}, 0 \notin [c, d] \\
\end{align*}
\]
Example: Interval Analysis

\[\begin{align*}
x & \rightarrow [0,3] & x & \rightarrow [0,2] & x & \rightarrow [0,1] & x & \rightarrow [0,0] \\
y & \rightarrow [3,7] & y & \rightarrow [3,5] & y & \rightarrow [3,3] & y & \rightarrow \text{bottom}
\end{align*}\]

Would Octagons determine that \(y \) must be 7 at program point 5?

\[\begin{align*}
\text{Neg}(x < 3) & \rightarrow 5 \\
\text{Pos}(x < 3) & \rightarrow 1 \\
y = y+1 & \rightarrow 2 \\
x = x+1 & \rightarrow 3 \\
y = 2 \times x & \rightarrow 4 \\
\end{align*}\]

Imprecise due to non-relational analysis
Intervals, Hasse diagram

Ascending chain condition is not satisfied!
→ Kleene iteration is not guaranteed to terminate!
Example: Interval Analysis

\[x \mapsto \bot \]
\[x \mapsto [0, 0] \]
\[x \mapsto [0, 1] \]
\[\ldots \]
\[x \mapsto [0, 1000] \]

1000 iterations later
Solution: Widening
“Enforce Ascending Chain Condition”

- Widening enforces the ascending chain condition during analysis.
- Accelerates termination by moving up the lattice more quickly.
- May yield imprecise results…

\[\{ x \mid x \supseteq \text{lfp } F \} \]
A widening ∇ is an operator $\nabla : D \times D \rightarrow D$ such that

1. **Safety**: $x \sqsubseteq (x \nabla y)$ and $y \sqsubseteq (x \nabla y)$

2. **Termination**:

 For all ascending chains $x_0 \sqsubseteq x_1 \sqsubseteq \ldots$ the chain

 $y_0 = x_0$

 $y_{i+1} = y_i \nabla x_{i+1}$

 is finite.
Widening Operator for Intervals

Simplest solution:

\[
\bot \nabla x = x \nabla \bot = x
\]

\[
[l, u] \nabla [l', u'] = \begin{cases} l & : l' \geq l \quad \{ u & : u' \leq u \\
\infty & : l' < l \quad \infty & : u' > u \end{cases}
\]

Example:

\[
\]

\[
[3, 5] \nabla [4, 5] = [3, 5]
\]

\[
[3, 5] \nabla [4, 6] = [3, \infty]
\]

\[
[3, 5] \nabla [2, 6] = [-\infty, \infty]
\]
Example Revisited: Interval Analysis with Simple Widening

Standard Kleene Iteration:
\[\perp \leq F(\perp) \leq F^2(\perp) \leq F^3(\perp) \leq \ldots \]

Kleene Iteration with Widening:
\[F_\triangledown(x) := x \triangledown F(x) \]
\[\perp \leq F_\triangledown(\perp) \leq F^2_\triangledown(\perp) \leq F^3_\triangledown(\perp) \leq \ldots \]

\[\begin{align*}
 x &\mapsto [0, 0] \\
 x &\mapsto [0, \infty]
\end{align*} \]

\[\text{Do we need to apply widening at all program points?} \]

\[\rightarrow \text{Quick termination but imprecise result!} \]
More Sophisticated Widening for Intervals

Define set of jump points (barriers) based on constants appearing in program, e.g.:

\[\mathcal{J} = \{-\infty, 0, 1, 1000, \infty\} \]

Intuition: “Don’t jump to –infty, +infty immediately but only to next jump point.”

\[[l, u] \nabla [l', u'] = \begin{cases}
 l & : l' \geq l \\
 \max\{x \in \mathcal{J} \mid x \leq l'\} & : l' < l' \\
 u & : u' \leq u \\
 \min\{x \in \mathcal{J} \mid x \geq u'\} & : u' > u
\end{cases} \]
Example Revisited:
Interval Analysis with Sophisticated Widening

\rightarrow More precise, potentially terminates more slowly.
Another Example: Interval Analysis with Sophisticated Widening

\[x \mapsto [0, 0] \]
\[x \mapsto [0, 1] \]
\[x \mapsto [0, 1000] \]

\[y \mapsto [2, 2] \]
\[y \mapsto [2, 1000] \]
\[y \mapsto [2, \infty] \]

Would be \([2, 2000]\) in least fixed point, but 2000 does not appear in the program…
Narrowing: Recovering Precision

- Widening may yield imprecise results by overshooting the least fixed point.
- Narrowing is used to approach the least fixed point from above.

Possible problem: infinite descending chains
Is it really a problem?
Narrowing:
Recovering Precision

Widening terminates at a point \(x \sqsupseteq \text{lfp } F \).
We can iterate:
\[
\begin{align*}
x_0 &= x \\
x_{i+1} &= F(x_i) \cap x_i
\end{align*}
\]

Safety:
By monotonicity we know \(F(x) \sqsupseteq F(\text{lfp } F) = \text{lfp } F \).
By induction we can easily show that \(x_i \sqsupseteq \text{lfp } F \) for all \(i \).

Termination:
Depends on existence of infinite descending chains.
Narrowing: Formal Requirement

A narrowing Δ is an operator $\Delta : D \times D \rightarrow D$ such that

1. **Safety**: $l \sqsubseteq x$ and $l \sqsubseteq y \implies l \sqsubseteq (x \Delta y) \sqsubseteq x$

2. **Termination**:

 for all descending chains $x_0 \sqsupseteq x_1 \sqsupseteq \ldots$ the chain

 $y_0 = x_0$

 $y_{i+1} = y_i \Delta x_{i+1}$

 is finite.

Is \sqcap (“meet”) a narrowing operator on intervals?
Another Example Revisited: Interval Analysis with Widening and Narrowing

Result after Widening:
\[
\begin{align*}
x & \mapsto [0, 0] \\
x & \mapsto [0, 1] \\
x & \mapsto [0, 1000] \\
y & \mapsto [2, 2] \\
y & \mapsto [2, 1000] \\
y & \mapsto [2, \infty]
\end{align*}
\]

Result after Narrowing:
\[
\begin{align*}
x & \mapsto [1000, 1000] \\
y & \mapsto [3, 2001] \\
x & \mapsto [0, 999] \\
x & \mapsto [1, 1000] \\
y & \mapsto [2, 2000]
\end{align*}
\]

→ Precisely the least fixed point!
Applications of Numerical Domains

As input to other analyses:
- Cache Analysis
- Dependencies between memory accesses

Loop Bound Analysis:
- Instrument program with loop iteration counters
- Determine maximal value of counter
- Requires relational analysis
Reduction: Loop Bound Analysis to Value Analysis

Instrument program with counters of loop iterations and other interesting events
Summary

- Interval Analysis: A non-relational value analysis
- Widenings for termination in the presence of Infinite Ascending Chains
- Narrowings to recover precision
- Basic Approach to Loop Bound Analysis based on Value Analysis
Outlook

- Cache Abstractions
- Schedulability Analysis
- Cache-Related Preemption Delay
- Predictable Microarchitectures