
Verification

of Real-Time Systems
Global Bound Analysis aka

Path Analysis

Jan Reineke

Advanced Lecture, Summer 2015

Structure of WCET Analyzers
comput er sc ien ce

saar l and
un iver si t yTiming Analysis Framework

Input

Executable

CFG

Reconstruction

Value

Analysis

Control

Flow

Analysis

Micro-

architectural

Analysis

Global

Bound
Analysis

WCET Bound

B Reconstructs a control flow

graph from the binary.

B Determines invariants for

the values in registers and in
memory.

B Determines constraints on the
control flow, by

B determining loop bounds, and

B identifying infeasible paths.

B Determines bounds on
execution times of basic blocks.

B Based on an abstract model

of the microarchitecture, includ-
ing detailed models of

B the pipeline, and

B the memory hierarchy.

B Determines a worst-case

path and an upper bound on

the execution time.

B Usually formulated as integer
linear program.

Jan Reineke Timing Analysis and Timing Predictability 2. April 2012 7 / 54

Reconstructs a

control-flow graph

from the binary.

Determines

invariants for the

values in registers

and in memory.

Determines invariants on the

control flow, by

• Determining loop bounds,

• Identifying infeasible paths.

Determines bound

on execution times

of program

fragments.

Determines a worst-

case path and an

upper bound on the

WCET.

Structure of WCET Analyzers
comput er sc ien ce

saar l and
un iver si t yTiming Analysis Framework

Input

Executable

CFG

Reconstruction

Value

Analysis

Control

Flow

Analysis

Micro-

architectural

Analysis

Global

Bound
Analysis

WCET Bound

B Reconstructs a control flow

graph from the binary.

B Determines invariants for

the values in registers and in
memory.

B Determines constraints on the
control flow, by

B determining loop bounds, and

B identifying infeasible paths.

B Determines bounds on
execution times of basic blocks.

B Based on an abstract model

of the microarchitecture, includ-
ing detailed models of

B the pipeline, and

B the memory hierarchy.

B Determines a worst-case

path and an upper bound on

the execution time.

B Usually formulated as integer
linear program.

Jan Reineke Timing Analysis and Timing Predictability 2. April 2012 7 / 54

Reconstructs a

control-flow graph

from the binary.

Determines

invariants for the

values in registers

and in memory.

Determines invariants on the

control flow, by

• Determining loop bounds,

• Identifying infeasible paths.

Determines bound

on execution times

of program

fragments.

Determines a worst-

case path and an

upper bound on the

WCET.

Global Bound Analysis aka Path Analysis

 Combines results of control-flow analysis

and microarchitectural analysis to

characterize all possible executions of a

program on a given microarchitecture

 Searches for longest execution among those

deemed possible

start

1 5

BB0

BB1

BB5

BB2

2

3

4

BB4

BB3

Result of Microarchitectural Analysis:

Abstract Collecting Trace Semantics

Initial states

Final states

Basic Block

Execution Times

(in cycles):

BB0: 2 or 3

BB1: 2 or 3

BB2: 2 or 3

BB3: 2

BB4: 4

BB5: 3

Result of Control-Flow Analysis

 Loop bounds: how often can the loop body be

executed for each execution of the loop?

 Sometimes: infeasible paths, as e.g. in

if (a > 0) then

 fast();

else

 slow(); //does not modify a

if (a > 1) then

 slow();

“Traditional” Path Analysis

 Encode problem as (Integer) Linear Program

 Introduce one variable xe for each edge e in the

control-flow graph that captures the execution

frequency of that edge

 Structural constraints: “Kirchhoff’s law”:

inflow = outflow at every program point

 Loop bounds and knowledge about infeasible

paths as additional constraints

 Objective function:

 max cexe

e

å
s.t. structural constraints + loop bounds, etc. hold

Traditional Path Analysis: Example

Structural Constraints

start

1 5

BB0

BB1

BB5

BB2

2

3

4

BB4

BB3

Basic Block

Execution Times

(in cycles):

BB0: 2 or 3

BB1: 2 or 3

BB2: 2 or 3

BB3: 2

BB4: 4

BB5: 3

x0 = x5 = 1

x0+x4 = x1+x5

 x1 = x2

 x2 = x3

 x3 = x4

Traditional Path Analysis: Example

Loop Bounds

start

1 5

BB0

BB1

BB5

BB2

2

3

4

BB4

BB3

Basic Block

Execution Times

(in cycles):

BB0: 2 or 3

BB1: 2 or 3

BB2: 2 or 3

BB3: 2

BB4: 4

BB5: 3

x1 ≤ n*x0,

where n is the

loop bound

Traditional Path Analysis: Example

Objective Function

start

1 5

BB0

BB1

BB5

BB2

2

3

4

BB4

BB3

Basic Block

Execution Times

(in cycles):

BB0: 2 or 3

BB1: 2 or 3

BB2: 2 or 3

BB3: 2

BB4: 4

BB5: 3

max cexe

e

å

= maxc0x0 + c1x1 + c2x2 + c3x3 +c4x4 + c5x5

= max3x0 +3x1 +3x2 + 2x3 + 4x4 +3x5

This can be pessimistic.

Why?

State-Sensitive Path Analysis aka

“Prediction-File” based Path Analysis

Idea: Distinguish different microarchitectural

 paths if they exhibit different timing

 Excludes impossible combinations of worst-

case timings of different basic blocks

Approach:

 Microarchitectural states at the beginning of

each basic block take the role of program

points in the traditional analysis

 Introduce “frequency variable” for each non-

dominated path from one such state to another.

State-Sensitive Path Analysis: Example

Structural Constraints

start

1 5

BB0

BB1

BB5

BB2

2

3

4

BB4

BB3

Basic Block

Execution Times

(in cycles):

BB0: 2 or 3

BB1: 2 or 3

BB2: 2 or 3

BB3: 2

BB4: 4

BB5: 3

…

x0,11,0+x0,21,0 =

x1,02,0+ x1,02,1

…

x2,03,0+x2,13,0 =

x3,04,0+ x3,04,1

…

What are the weights in

the objective function?

(0,1) (0,2)

(1,0)

(3,0)

(2,0)

(2,1)

(4,0)

(4,1)

How to take into account cumulative

information such as cache persistence?

Prohibits certain micro-architectural paths:

 If block b is persistent, then at most one edge

may be taken that corresponds to a miss to b.

 Need to expose the information that an edge

corresponds to a particular event, such as a

cache miss to block b.

Taking into account cumulative

information: Cache Persistence Example

Introduce a variable xb,miss that counts

the number of misses to b.

Add persistence constraints for b:

 xb,miss ≤ 1 or xb,miss ≤ xscope

where xscope is the number of times the

scope is entered in which b is persistent.

Frequency of edges e that correspond to

misses to b should not exceed xb,miss:

xe

e

å £ xb,miss

Conclusions

High-level ideas of state-of-the-art path analysis:

 Encode all program paths implicitly by set of

linear constraints.

 Objective function corresponds to cost of a

particular path.

 Take into account microarchitectural states for

higher precision “State-sensitive path

analysis”

 Expose events that can be bounded

cumulatively, like cache misses.

