
Verification of

Real-Time Systems

Jan Reineke

Advanced Lecture, Summer 2015

Organizational Issues

 Advanced Course (6 CPs)

 Lectures every Thursday 14-16, E1.3, HS003

 Tutorials: 2 hours every week; tentative date:

• Monday 12-14, E1 1 room U12

 Written examination at the end of the term

• Need to obtain > 50% of total points on exercises to participate

• Grade determined by score on exam

 Web: http://embedded.cs.uni-saarland.de/realtime15.php

Structure of Course

? +
1. What are Real-

Time Systems?

2. How are they

programmed?

3. How to verify

the real-time

constraints?

1. What are Real-Time Systems?

In a real-time system, correctness not only depends on

the logical results but also on the time at which results

are produced.

 Typical misconception:

• Real-time computing ≠ compute things as fast as possible

• Real-time computing = compute as fast as necessary,

 but not too fast

1. What are Real-Time Systems?

 Real-time systems are often embedded control systems

 Timing requirements often dictated by interaction with

physical environment:

 Examples in Automotives:

• ABS: Anti-lock braking systems

• ESP: Electronic stability control

• Airbag controllers

 Many more examples in trains, avionics, and robotics…

Classification of Real-Time Constraints

Hard and Soft Real-Time Systems

 “A real-time constraint is called hard, if not meeting that

constraint could result in a catastrophe“ [Kopetz, 1997]

 Safety-critical real-time systems

 Main focus of this course

 Can you think of examples?

 All other time-constraints are called soft.

 Can you think of examples?

 A guaranteed system response has to be explained without

statistical arguments [Kopetz, 1997].

2. How are they programmed?

Typical structure of control systems:

A very basic approach to program such a system:

Controller

Physical

Plant

S
e

n
s
o

rs

A
c
tu

a
to

r

s

initialize state;

every clock-tick do

 read inputs;

 compute outputs and next state;

 emit outputs

end-do

Can be modeled by

automaton.

How to describe such

automata? 

Synchronous Languages

Basic Approach:
Advantages

 Perfect match for sampled-data control theory

 Easy to implement, even on “bare” machine

 Timing analysis is comparably “simple”:

 Need to “only” verify:

 WCET < 1

0 1 2 3 4
time

Basic Approach:
Limitations

 Distributed systems

What if sensing, actuating, and computing

happen at multiple locations?

 Event-triggered systems

What if (some) computations are triggered by

events rather than time?

 Multiperiodic systems

What if different computations need to be

performed at different periods?

2. How are they programmed?

Scheduling Policies

Sophisticated scheduling policies have been

introduced to overcome these limitations.

Example 1: Preemptive scheduling

Non-preemptive

execution of two

periodic tasks:

0 1 2 3 4

T1

T2

time

Preemptive

execution of the

two tasks:

2. How are they programmed?
Scheduling Policies

Sophisticated scheduling policies have been

introduced to overcome these limitations.

Example 2: Multiprocessor scheduling

Is this task set

schedulable on

two processors?

It is!

3. How to verify the real-time constraints?
Schedulability Analysis

Schedulability tests determine whether a given

set of tasks is feasible under a particular

scheduling policy.

They all require bounds on the worst-case

execution time (WCET) of all tasks.

3. How to verify the real-time constraints?
Worst-case Execution Time Analysis

Worst-case execution time = maximum

execution time of a program on a given

microarchitecture

+

What does the execution time of a

program depend on?

Input-dependent

control flow
Microarchitectural State

+

Reineke et al., Berkeley 4

What does the execution time of a

program depend on?

Input-dependent

control flow
Microarchitectural State

+

Complex

CPU

L1

Cache

Complex
CPU

L1
Cache

...
L2

Cache
Main
Memory

Pipeline,

Memory Hierarchy,

Interconnect

Example of Influence of

Microarchitectural State

Motorola PowerPC 755

Courtesy of Reinhard Wilhelm.

Reineke et al., Berkeley 5

Example of Influence of

Microarchitectural State
comput er sc ien ce

saar l and
un iver si t yAccess Time

x=a+b;

LOAD r2, _a

LOAD r1, _b

ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63

comput er sc ien ce

saar l and
un iver si t yAccess Time

x=a+b;

LOAD r2, _a

LOAD r1, _b

ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63

Motorola PowerPC 755

Courtesy of Reinhard Wilhelm.

Reineke et al., Berkeley 5

Example of Influence of

Microarchitectural State
comput er sc ien ce

saar l and
un iver si t yAccess Time

x=a+b;

LOAD r2, _a

LOAD r1, _b

ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63

comput er sc ien ce

saar l and
un iver si t yAccess Time

x=a+b;

LOAD r2, _a

LOAD r1, _b

ADD r3,r2,r1

MPC5xx PPC755

Reinhard Wilhelm Timing Analysis and Timing Predictability Tutorial ISCA 2010 5 / 63

Motorola PowerPC 755

Courtesy of Reinhard Wilhelm.

Notions in Worst-case Execution Time

Analysis

Worst-case Execution Time Analysis
What is hard about it?

 Need to account for all possible paths through

the program, but not many more for precision…

 Even termination is in general undecidable.

 Need to account for all possible states of the

microarchitecture that may arise.

 We will see “unpredictable” components.

 Before performing WCET analysis, one needs

to construct a faithful model of the

microarchitecture; documentation is limited.

Overview of Topics

 Today:

 High-level Overview of Challenges

 Rest of the course:

 Worst-case Execution Time Analysis

• Foundations of Abstract Interpretation

• Value and Control-flow Analyses

• Static Cache Analysis

• Analysis of Preemption Cost

 Predictable Microarchitectures

 Real-time Scheduling Policies and Schedulability

Analysis

