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Predictability and Temporal Isolation 

 Many embedded systems 

are real-time systems 

 Need for   

 Timing Predictability 

 

 Trend towards integrated 

architectures: 

 Need for   

 Temporal Isolation 

Streaming Today 

PAGE 1 

Video on handhelds 

/ Electrical Engineering, Electronic Systems group 

[Thanks to Martijn Koedam] 

9/26/2011 

Audio + video playback 

with latency and 

bandwidth constraints  
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Pipelining: Hazards 

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007. 

Great Except for Hazards

Hennessey and Patterson, Computer Archi tecture: A Quanti tativeApproach, 2007.
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Forwarding helps, but not all the time… 
...But It Does Not Solve Everything...

LD R1, 45( r 2)

DADD R5, R1, R7

BE R5, R3, R0

ST R5, 48( R2)

Unpipelined F D E M W F D E M W F D E M W F D E M W

F D E M W

The Dream F D E M W

F D E M W

F D E M W

F D E M W

The Reality F D E M W Memory Hazard

F D E M W Data Hazard

F D E M W Branch Hazard
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Our Solution: Thread-interleaved Pipelines 

Our Solution: Thread-Interleaved Pipelines

+

An old idea from the 1960s

T1: F D E M W F D E M W

T2: F D E M W F D E M W

T3: F D E M W F D E M W

T4: F D E M W F D E M W

T5: F D E M W F D E M W

But what about memory?

Lee and Messerschmitt,

Pipeline Interleaved

ProgrammableDSPs,

ASSP-35(9), 1987.

Our Solution: Thread-Interleaved Pipelines

+

An old idea from the 1960s

T1: F D E M W F D E M W

T2: F D E M W F D E M W

T3: F D E M W F D E M W

T4: F D E M W F D E M W

T5: F D E M W F D E M W

But what about memory?

Lee and Messerschmitt,

Pipeline Interleaved

ProgrammableDSPs,

ASSP-35(9), 1987.

Each thread occupies only one stage of the pipeline at a time 

  No hazards; perfect utilization of pipeline 

  Simple hardware implementation (no forwarding, etc.) 

  Latency of instructions independent of micro-architectural state 

  Microarchitectural timing analysis becomes trivial  

 

 Drawback: reduced single-thread performance 
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Second Problem: Memory Hierarchy 

Lee, Berkeley  21

Second Problem: Memory Hierarchy

Register file is a temporary memory under program control.

Why is it so small?

Cache is a temporary memory under hardware control.

Why is replacement strategy application independent?

PRET principle: any temporary memory is under program 

control.

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007.

Instruction word size.

Separation of concerns.

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007. 

• Register file is a temporary memory under program 

control. 

• Cache is a temporary memory under hardware control. 

PRET principle: any temporary memory is under program 

control. 
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PRET principles implies Scratchpad in 

place of Cache 

Lee, Berkeley  22

Hardware

threadHardware

threadHardware

thread

PRET principle implies using a 

scratchpad rather than a cache.

Hardware

thread

registers

scratc

h

pad

memory I/O devices

Interleaved 

pipeline with one 

set of registers 

per thread

SRAM 

scratchpad 

shared among 

threads

DRAM main 

memory
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Memory Hierarchy: 

Dynamic RAM vs Static RAM 

Lee, Berkeley  21

Second Problem: Memory Hierarchy

Register file is a temporary memory under program control.

Why is it so small?

Cache is a temporary memory under hardware control.

Why is replacement strategy application independent?

PRET principle: any temporary memory is under program 

control.

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007.

Instruction word size.

Separation of concerns.

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007. 

DRAM 
• Slow  High Latency 

• High Capacity 

SRAM 
• Fast  Low Latency 

• Low Capacity 



Reineke et al., Berkeley 13 

Dynamic RAM Organization Overview 
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DRAM Device 
Set of DRAM banks + 

• Control logic 

• I/O gating 

Accesses to banks can be pipelined, 

however I/O + control logic are shared  

DRAM Cell 
Leaks charge  Needs to 

be refreshed (every 64ms 

for DDR2/DDR3) 

therefore “dynamic” 

DRAM Bank  
= Array of DRAM Cells  

+ Sense Amplifiers and 

 Row Buffer 

Sharing of sense 

amplifiers and row buffer 

DRAM Module 
Collection of DRAM Devices 

• Rank = groups of devices 

that operate in unison  

• Ranks share 

data/address/command 

bus 
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DRAM Memory Controller 

Translates sequences of memory accesses by Clients (CPUs and I/O) into 

legal sequences of DRAM commands 

 Needs to obey all timing constraints 

 Needs to insert refresh commands sufficiently often 

 Needs to translate “physical” memory addresses into 

row/column/bank tuples 

 

n 
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Dynamic RAM Timing Constraints 
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DRAM Memory Controllers have to conform to different timing constraints 

that define minimal distances between consecutive DRAM commands. 

 

Almost all of these constraints are due to the sharing of resources at 

different levels of the hierarchy: 

 

Needs to insert 

refresh 

commands 

sufficiently often 

Rows within a 

bank share 

sense amplifiers 

Banks within a 

DRAM device 

share I/O gating 

and control logic 

Different ranks 

share 

data/address/comm

and busses 
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General-Purpose DRAM Controllers 

 Schedule DRAM commands dynamically 

 Timing hard to predict even for single client: 

 Timing of request depends on past requests: 

• Request to same/different bank? 

• Request to open/closed row within bank? 

• Controller might reorder requests to minimize latency 

 Controllers dynamically schedule refreshes 

 Non-composable timing. Timing depends on behavior 

of other clients: 

 They influence sequence of “past requests” 

 Arbitration may or may not provide guarantees 
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General-Purpose DRAM Controllers 

Load 
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RAS  
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CAS  
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… 

RAS  

B1.R3 

CAS  
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B1.R4 

CAS  

B1.C3 
… CAS  

B1.C5 

Memory 

Controller 

? 
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Thread 2 

 

 

 

Thread 1 

 

 

 

General-Purpose DRAM Controllers 
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Predictable DRAM Controllers: 

Predator (Eindhoven) and AMC (Barcelona) 

Predictable and/or 

composable arbitration: 

• Predator: CCSP 

• AMC: TDMA  

Closed-page policy: timing 

independent of previously 

accessed row 

Spread each request 

over all banks, pipeline 

accesses to banks. 

Statically precomputed 

sequences for writes, 

reads, write->read,  

read->write, refresh. 

n 
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Predictable DRAM Controllers: 

Predator (Eindhoven) 

Load 

B1.R3.C2 

Load 

B1.R4.C3 

Store 

B1.R3.C5 … 

Predictable Memory 

Controller: Predator 

Read Pattern Read Pattern Write Pattern R/W Pattern 

Closed-page policy: timing 

independent of previously 

accessed row 

Spread each request 

over all banks, pipeline 

accesses to banks. 

Statically precomputed 

sequences for writes, 

reads, write->read,  

read->write, refresh. 
 increases access 

granularity 



Reineke et al., Berkeley 22 

Thread 2 

 

 

 

Thread 1 

 

 

 

Predictable DRAM Controllers: 

Predator (Eindhoven) and AMC (Barcelona) 

Load 

B1.R3.C2 

Predictable and/or Composable Arbitration 

(e.g. time-division multiple access) 

Memory 

Controller 

Load 

B3.R3.C2 

Load 

B3.R5.C3 

Store 

B2.R3.C5 

? Load 

B1.R3.C2 

Load 

B3.R3.C2 

Load 

B3.R5.C3 

Store 

B2.R3.C5 

… 



Reineke et al., Berkeley 23 

Outline 

 Introduction 

 Precision-Timed ARM (PTARM) Pipeline 

 PTARM Memory Hierarchy Principles 

 PTARM DRAM Controller 

 DRAM Basics 

 Related Work: Predator and AMC 

 PRET DRAM Controller: Main Ideas 

 Evaluation 

 Integration into Precision-Timed ARM 



Reineke et al., Berkeley 24 

PRET DRAM Controller: 

Three Innovations 

 Expose internal structure of DRAM devices: 

 Expose individual banks within DRAM device as 

multiple independent resources 

 

 
 

 
 

 Defer refreshes to the end of transactions 

 Allows to hide refresh latency 

 Perform refreshes “manually”: 

 Replace standard refresh command with multiple 

reads 
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PRET DRAM Controller: Exploiting 

Internal Structure of DRAM Module 

 Consists of 4-8 banks in 1-2 ranks 

• Share only command and data bus, otherwise independent 

 Partition into four groups of banks in alternating ranks 

 Cycle through groups in a time-triggered fashion 

 

Ban

k 0 

Ban

k 1 

Ban

k 2 

Ban

k 3 

Rank 0: 

Ban

k 0 

Ban

k 1 

Ban

k 2 

Ban

k 3 

Rank 1: 

• Successive accesses to 

same group obey timing 

constraints 

• Reads/writes to different 

groups do not interfere 
 

Provides four 

independent and 

predictable resources 
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PRET DRAM Controller: Exploiting 

Internal Structure of DRAM Module 

Load 

B1.R3.C2 

Load 

B1.R4.C3 

Store 

B1.R3.C5 … 

PRET DRAM 

Controller 

Read 

Pattern 

Read 

Pattern 

Write 

Pattern … 
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Pipelined Bank Access Scheme 
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Figure1: A dual-ranked dual in-line memory module.

Table 1: Overview of DDR2-400 timing parameters at the example of the Qimonda HYS64T64020EM-2.5-B2.
Para-
meter

Value (in cycles
at 200 MHz)

Description

tRCD 3 Row-to-Column delay: time from row activation to first read or write to a column within that row.
tCL 3 Column latency: time between acolumn access command and the start of data being returned.
tWL tCL − 1 = 2 Write latency: time after write command until first data is available on the bus.
tWR 3 Write recovery time: time between the end of a write data burst and the start of a precharge command.
tWTR 2 Write to read time: time between the end of a write data burst and the start of a column-read command.
tRP 3 Time to precharge the DRAM array before next row activation.
tRFC 21 Refresh cycle time: time interval between a refresh command and a row activation.
tFAW 10 Four-bank activation window: interval in which maximally four banks may be activated.
tAL set by user Additive latency: determines how long posted column accesses are delayed.
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Figure 2: The per iodic and pipelined access scheme employed
by the backend. In the example, we per form a read from re-

source 0 (in rank 0), a wr ite to resource 1 (in rank 1), and a
read from resource2 (in rank 0).

DRAM controller isspecific to our DDR2 memory module, thekey
design features areapplicable to other modern memory modules.

4.1 DRAM Controller Backend
The backend views the memory device as four independent re-

sources: each resource consisting of two banks within the same

rank. By issuing commands to the independent resources in a pe-
riodic and pipelined fashion, we exploit bank parallelism and re-
move interference amongst the resources. This is unlike conven-

tional DRAM controllers that view the entire memory device as
one resource. Other partitions of the eight banks would be possi-

ble, as long as all of the banks that are part of a resource belong to
the same rank of the memory module, and each of the two ranks

contains two resources.
Figure2 showsan exampleof thefollowing accessrequests from

the frontend: read from resource 0 in rank 0, write to resource 1 in
rank 1, and read from resource 2 in rank 0. The controller peri-

odically provides access to the four resources every 13 cycles. In
doing so, we exploit bank parallelism for high bandwidth, yet, we

avert access patterns that otherwise incur high latency due to the
sharing of resources within banks and ranks.

The backend translates each access request into a row access
command (RAS), a posted column access command (posted-CAS)

or a NOP. We refer to a triple of RAS, CAS and NOP as an access
slot. In order to meet row to column latency shown in Table 1, the

RAS command and the first CAS command need to be 3 cycles
apart. However, we can see from Figure 2 that if we waited for 3

cycles before issuing the CAS to access the first resource, it would
conflict with the RAS command for accessing the second resource

on the command bus. Instead, we set the additive latency tAL to 2.
This way, the posted-CAS results in a CAS two cycles later within
the DRAM chip. This is shown in Figure 2 as the posted-CAS

appears within its rank 2 cycles after the CAS was issued on the
command bus, preserving the pipelined access scheme.

The row access command moves a row into the row buffer. The
column access command can be either a read or a write, causing a

burst transfer of 8·4 = 32 bytes, which will occupy thedatabusfor
two cycles(as two transfers occur in every cycle). Weuseaclosed-

page policy (also known as auto-precharge policy), which causes
the accessed row to be immediately precharged after performing

the column access (CAS), preparing it for the next row access. If
there are no requests for a resource, the backend does not send any

commands to the memory module, as is the case for resource 3 in
Figure 2.

There is a one cycle offset between the read and write laten-
cies. Given that requests may alternate between reads and writes,

thecontroller inserts aNOPbetween any two consecutiverequests.
This avoids a collision on the data bus between reads and writes.

By alternating between ranks, no two adjacent accesses go to the
same rank. This satisfies the write-to-read timing constraint tWTR
incurred by the sharing of I/O gating within ranks. In addition, we
satisfy the four-bank activation window constraint because within
any window of size tFAW we activate at most four banks due to

the periodic access scheme.
With theclosed-pagepolicy, in caseof awrite, weneed 13 cycles

to access the row, perform a burst access, and precharge the bank
to prepare for the next row access. This is the reason for adding a

NOP after four access slots: to increase the distance between two
access slots belonging to the same resource from 12 to 13 cycles.

The backend does not issue any refresh commands to the memory

READ WRITE READ 
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PRET DRAM Controller: 

“Manual” Refreshes 

(refresh latencies not to scale) 

 Every row needs to be refreshed every 64ms 

 Dedicated refresh commands refresh one row 

in each bank at once 

 We replace these with “manual” refreshes 

through reads 

 Improves worst-case latency of short requests 

Dedicated refresh commands vs refreshes through reads. 
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PRET DRAM Controller: 

Defer Refreshes 

 Refreshes do not have to happen periodically 

 Refresh every row at least every 64 ms 

 Schedule refreshes slightly more often than 

necessary  Enables to defer refreshes 
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General-Purpose DRAM Controller 

        vs PRET DRAM Controller 

General-Purpose Controller 

 Abstracts DRAM as a 

single shared resource 

 Schedules refreshes 

dynamically 

 

 

 Schedules commands 

dynamically 

 “Open page” policy  

speculates on locality 

 

PRET DRAM Controller 

 Abstracts DRAM as multiple 

independent resources 

 Refreshes as reads:       

shorter interruptions 

 Defer refreshes:      

improves perceived latency 

 Follows periodic, time-

triggered schedule 

 “Closed page” policy:  

access-history independence  



Reineke et al., Berkeley 31 
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Conventional DRAM Controller (DRAMSim2) 

vs PRET DRAM Controller:  

Latency Evaluation 

Varying Interference: Varying Transfer Size: 
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PRET DRAM Controller vs Predator: 

Analytical Evaluation 

Predator: 

• abstracts DRAM as 

single resource 

• uses standard refresh 

mechanism 
 

 PRET controller 

improves worst-case 

access latency of small 

transfers 

 



Reineke et al., Berkeley 34 

PRET DRAM Controller vs Predator: 

Analytical Evaluation 

• Less of a difference 

for larger transfers 

• Predator provides 

slightly higher 

bandwidth due to 

more efficient refresh 

mechanism  
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Precision-Timed ARM (PTARM) 

Architecture Overview 

 Thread-Interleaved Pipeline for predictable timing 

without sacrificing high throughput 

 One private DRAM Resource + DMA Unit per 

Hardware Thread  

 Shared Scratchpad Instruction and Data Memories 

for low latency access 

Lee, Berkeley  24

Hardware

threadHardware

threadHardware

thread

Resulting PRET Architecture
We have realized this in PTArm,

a soft core on a Xilinx Virtex 5 FPGA

Hardware

thread

registers

scratc

h

pad

memory

I/O devices

Interleaved 

pipeline with one 

set of registers 

per thread

SRAM 

scratchpad 

shared among 

threads

DRAM main 

memory, 

separate banks 

per thread

memory
memory

memory

Note inverted memory 

compared to multicore! 

Fast, close memory is 

shared, slow remote 

memory is private!http://chess.eecs.berkeley.edu/pret/ 
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Conclusions and Future Work 

 PTARM =             

Thread-interleaved pipeline + Scratchpads + Predictable DRAM: 

 Predictability without sacrificing throughput 

 Temporal isolation between hardware threads 

 How to program the inverted memory hierarchy? 

 
Raffaello Sanzio da Urbino – The Athens School 



Reineke et al., Berkeley 38 

References 

Related Work on Memory Controllers: 

 M. Paolieri, E. Quiñones, F. Cazorla, and M. Valero, “An analyzable memory controller for hard real-

time CMPs,” IEEE Embedded Systems Letters, vol. 1, no. 4, pp. 86–90, 2010.  

 B. Akesson, K. Goossens, and M. Ringhofer, “Predator: a predictable SDRAM memory controller,” in 

CODES+ISSS. ACM, 2007, pp. 251–256.  

 

Work within the PRET project: 

 [CODES ’11] Jan Reineke, Isaac Liu, Hiren D. Patel, Sungjun Kim, Edward A. Lee, PRET DRAM 

Controller: Bank Privatization for Predictability and Temporal Isolation, International Conference on 

Hardware/Software Codesign and System Synthesis (CODES+ISSS), October, 2011. 

 [DAC ‘11] Dai Nguyen Bui, Edward A. Lee, Isaac Liu, Hiren D. Patel, Jan Reineke, Temporal Isolation 

on Multiprocessing Architectures, Design Automation Conference (DAC), June, 2011. 

 [Asilomar ‘10] Isaac Liu, Jan Reineke, and Edward A. Lee, PRET Architecture Supporting Concurrent 

Programs with Composable Timing Properties, in Signals, Systems, and Computers (ASILOMAR), 

Conference Record of the Forty Fourth Asilomar Conference, November 2010, Pacific Grove, 

California. 

 [CASES ’08] Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Stephen A. Edwards and Edward A. 

Lee, "Predictable Programming on a Precision Timed Architecture," in Proceedings of International 

Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES), Piscataway, 

NJ, pp. 137-146, IEEE Press, October, 2008. 

 

http://chess.eecs.berkeley.edu/pubs/851.html
http://chess.eecs.berkeley.edu/pubs/851.html
http://chess.eecs.berkeley.edu/pubs/851.html
http://chess.eecs.berkeley.edu/pubs/851.html
http://chess.eecs.berkeley.edu/pubs/851.html
http://chess.eecs.berkeley.edu/pubs/839.html
http://chess.eecs.berkeley.edu/pubs/839.html
http://chess.eecs.berkeley.edu/pubs/839.html
http://chess.eecs.berkeley.edu/pubs/839.html
http://chess.eecs.berkeley.edu/pubs/839.html
http://chess.eecs.berkeley.edu/pubs/803.html
http://chess.eecs.berkeley.edu/pubs/803.html
http://chess.eecs.berkeley.edu/pubs/803.html
http://chess.eecs.berkeley.edu/pubs/803.html
http://chess.eecs.berkeley.edu/pubs/803.html
http://chess.eecs.berkeley.edu/pubs/803.html
http://chess.eecs.berkeley.edu/pubs/803.html
http://chess.eecs.berkeley.edu/pubs/475.html
http://chess.eecs.berkeley.edu/pubs/475.html
http://chess.eecs.berkeley.edu/pubs/475.html
http://chess.eecs.berkeley.edu/pubs/475.html
http://chess.eecs.berkeley.edu/pubs/475.html

