
Verification

of Real-Time Systems
Precision-Timed ARM –

An Example of a Predictable

Microarchitecture

Stephen A. Edwards Columbia University

Sungjun Kim Columbia University

Edward A. Lee UC Berkeley

Isaac Liu UC Berkeley

Hiren D. Patel University of Waterloo

Jan Reineke Saarland University UC Berkeley

Reineke et al., Berkeley 2

Predictability and Temporal Isolation

 Many embedded systems

are real-time systems

 Need for

 Timing Predictability

 Trend towards integrated

architectures:

 Need for

 Temporal Isolation

Streaming Today

PAGE 1

Video on handhelds

/ Electrical Engineering, Electronic Systems group

[Thanks to Martijn Koedam]

9/26/2011

Audio + video playback

with latency and

bandwidth constraints

Reineke et al., Berkeley 3

Outline

 Introduction

 Precision-Timed ARM (PTARM) Pipeline

 PTARM Memory Hierarchy Principles

 PTARM DRAM Controller

 DRAM Basics

 Related Work: Predator and AMC

 PRET DRAM Controller: Main Ideas

 Evaluation

 Integration into Precision-Timed ARM

Reineke et al., Berkeley 4

Outline

 Introduction

 Precision-Timed ARM (PTARM) Pipeline

 PTARM Memory Hierarchy Principles

 PTARM DRAM Controller

 DRAM Basics

 Related Work: Predator and AMC

 PRET DRAM Controller: Main Ideas

 Evaluation

 Integration into Precision-Timed ARM

Reineke et al., Berkeley 5

Pipelining: Hazards

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.

Great Except for Hazards

Hennessey and Patterson, Computer Archi tecture: A Quanti tativeApproach, 2007.

Reineke et al., Berkeley 6

Forwarding helps, but not all the time…
...But It Does Not Solve Everything...

LD R1, 45(r 2)

DADD R5, R1, R7

BE R5, R3, R0

ST R5, 48(R2)

Unpipelined F D E M W F D E M W F D E M W F D E M W

F D E M W

The Dream F D E M W

F D E M W

F D E M W

F D E M W

The Reality F D E M W Memory Hazard

F D E M W Data Hazard

F D E M W Branch Hazard

Reineke et al., Berkeley 7

Our Solution: Thread-interleaved Pipelines

Our Solution: Thread-Interleaved Pipelines

+

An old idea from the 1960s

T1: F D E M W F D E M W

T2: F D E M W F D E M W

T3: F D E M W F D E M W

T4: F D E M W F D E M W

T5: F D E M W F D E M W

But what about memory?

Lee and Messerschmitt,

Pipeline Interleaved

ProgrammableDSPs,

ASSP-35(9), 1987.

Our Solution: Thread-Interleaved Pipelines

+

An old idea from the 1960s

T1: F D E M W F D E M W

T2: F D E M W F D E M W

T3: F D E M W F D E M W

T4: F D E M W F D E M W

T5: F D E M W F D E M W

But what about memory?

Lee and Messerschmitt,

Pipeline Interleaved

ProgrammableDSPs,

ASSP-35(9), 1987.

Each thread occupies only one stage of the pipeline at a time

  No hazards; perfect utilization of pipeline

  Simple hardware implementation (no forwarding, etc.)

  Latency of instructions independent of micro-architectural state

  Microarchitectural timing analysis becomes trivial

 Drawback: reduced single-thread performance

Reineke et al., Berkeley 8

Outline

 Introduction

 Precision-Timed ARM (PTARM) Pipeline

 PTARM Memory Hierarchy Principles

 PTARM DRAM Controller

 DRAM Basics

 Related Work: Predator and AMC

 PRET DRAM Controller: Main Ideas

 Evaluation

 Integration into Precision-Timed ARM

Reineke et al., Berkeley 9

Second Problem: Memory Hierarchy

Lee, Berkeley 21

Second Problem: Memory Hierarchy

Register file is a temporary memory under program control.

Why is it so small?

Cache is a temporary memory under hardware control.

Why is replacement strategy application independent?

PRET principle: any temporary memory is under program

control.

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007.

Instruction word size.

Separation of concerns.

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.

• Register file is a temporary memory under program

control.

• Cache is a temporary memory under hardware control.

PRET principle: any temporary memory is under program

control.

Reineke et al., Berkeley 10

PRET principles implies Scratchpad in

place of Cache

Lee, Berkeley 22

Hardware

threadHardware

threadHardware

thread

PRET principle implies using a

scratchpad rather than a cache.

Hardware

thread

registers

scratc

h

pad

memory I/O devices

Interleaved

pipeline with one

set of registers

per thread

SRAM

scratchpad

shared among

threads

DRAM main

memory

Reineke et al., Berkeley 11

Outline

 Introduction

 Precision-Timed ARM (PTARM) Pipeline

 PTARM Memory Hierarchy Principles

 PTARM DRAM Controller

 DRAM Basics

 Related Work: Predator and AMC

 PRET DRAM Controller: Main Ideas

 Evaluation

 Integration into Precision-Timed ARM

Reineke et al., Berkeley 12

Memory Hierarchy:

Dynamic RAM vs Static RAM

Lee, Berkeley 21

Second Problem: Memory Hierarchy

Register file is a temporary memory under program control.

Why is it so small?

Cache is a temporary memory under hardware control.

Why is replacement strategy application independent?

PRET principle: any temporary memory is under program

control.

Hennessey and Patterson, Computer Architecture: A Quantitative Approach, 4th edition, 2007.

Instruction word size.

Separation of concerns.

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.

DRAM
• Slow  High Latency

• High Capacity

SRAM
• Fast  Low Latency

• Low Capacity

Reineke et al., Berkeley 13

Dynamic RAM Organization Overview

DIMMaddr+cmd

chip select 0

16

 data

chip select 1

x16

Device

16

 data

16

 data

16

 data

x16

Device

x16

Device

x16

Device

x16

Device

x16

Device

x16

Device

x16

Device

64

data

Rank 0 Rank 1

address

I/
O

 R
e

g
is

te
rs

+

 D
a

ta
 I

/OAddress
Register

Control

Logic

Mode
Register

16

data

command

chip select

DRAM Device

BankBankBankBank
Row

Address
Mux

Refresh
Counter

I/O
Gating

DRAM
Array

R
o

w
 D

e
c
o

d
e

r

Sense Amplifiers

and Row Buffer

Column Decoder/
Multiplexer

R
o

w

A
d
d

re
s
s

Bank

CapacitorBit line

Word line

Transistor

Capacitor

DRAM Device
Set of DRAM banks +

• Control logic

• I/O gating

Accesses to banks can be pipelined,

however I/O + control logic are shared

DRAM Cell
Leaks charge  Needs to

be refreshed (every 64ms

for DDR2/DDR3)

therefore “dynamic”

DRAM Bank
= Array of DRAM Cells

+ Sense Amplifiers and

 Row Buffer

Sharing of sense

amplifiers and row buffer

DRAM Module
Collection of DRAM Devices

• Rank = groups of devices

that operate in unison

• Ranks share

data/address/command

bus

Reineke et al., Berkeley 14

DRAM Memory Controller

Translates sequences of memory accesses by Clients (CPUs and I/O) into

legal sequences of DRAM commands

 Needs to obey all timing constraints

 Needs to insert refresh commands sufficiently often

 Needs to translate “physical” memory addresses into

row/column/bank tuples

n

Reineke et al., Berkeley 15

Dynamic RAM Timing Constraints

DIMMaddr+cmd

chip select 0

16

 data

chip select 1

x16

Device

16

 data

16

 data

16

 data

x16

Device

x16

Device

x16

Device

x16

Device

x16

Device

x16

Device

x16

Device

64

data

Rank 0 Rank 1

address

I/
O

 R
e

g
is

te
rs

+

 D
a

ta
 I

/OAddress
Register

Control

Logic

Mode
Register

16

data

command

chip select

DRAM Device

BankBankBankBank
Row

Address
Mux

Refresh
Counter

I/O
Gating

DRAM
Array

R
o

w
 D

e
c
o

d
e

r

Sense Amplifiers

and Row Buffer

Column Decoder/
Multiplexer

R
o

w

A
d
d

re
s
s

Bank

CapacitorBit line

Word line

Transistor

Capacitor

DRAM Memory Controllers have to conform to different timing constraints

that define minimal distances between consecutive DRAM commands.

Almost all of these constraints are due to the sharing of resources at

different levels of the hierarchy:

Needs to insert

refresh

commands

sufficiently often

Rows within a

bank share

sense amplifiers

Banks within a

DRAM device

share I/O gating

and control logic

Different ranks

share

data/address/comm

and busses

Reineke et al., Berkeley 16

General-Purpose DRAM Controllers

 Schedule DRAM commands dynamically

 Timing hard to predict even for single client:

 Timing of request depends on past requests:

• Request to same/different bank?

• Request to open/closed row within bank?

• Controller might reorder requests to minimize latency

 Controllers dynamically schedule refreshes

 Non-composable timing. Timing depends on behavior

of other clients:

 They influence sequence of “past requests”

 Arbitration may or may not provide guarantees

Reineke et al., Berkeley 17

General-Purpose DRAM Controllers

Load

B1.R3.C2

Load

B1.R4.C3

Load

B1.R3.C5 …

RAS

B1.R3

CAS

B1.C2
… RAS

B1.R4

CAS

B1.C3
… RAS

B1.R3

CAS

B1.C5
…

RAS

B1.R3

CAS

B1.C2
… RAS

B1.R4

CAS

B1.C3
… CAS

B1.C5

Memory

Controller

?

Reineke et al., Berkeley 18

Thread 2

Thread 1

General-Purpose DRAM Controllers

Load

B1.R3.C2

Load

B2.R4.C3

Store

B4.R3.C5

Arbitration

Memory

Controller

Load

B3.R3.C2

Load

B3.R5.C3

Store

B2.R3.C5

? Load

B1.R3.C2

Load

B3.R3.C2

Load

B2.R4.C3

Store

B4.R3.C5

Load

B3.R5.C3

Store

B2.R3.C5

Load

B1.R3.C2

Load

B3.R3.C2

Load

B2.R4.C3

Store

B4.R3.C5

Load

B3.R5.C3

Store

B2.R3.C5

Reineke et al., Berkeley 19

Outline

 Introduction

 Precision-Timed ARM (PTARM) Pipeline

 PTARM Memory Hierarchy Principles

 PTARM DRAM Controller

 DRAM Basics

 Related Work: Predator and AMC

 PRET DRAM Controller: Main Ideas

 Evaluation

 Integration into Precision-Timed ARM

Reineke et al., Berkeley 20

Predictable DRAM Controllers:

Predator (Eindhoven) and AMC (Barcelona)

Predictable and/or

composable arbitration:

• Predator: CCSP

• AMC: TDMA

Closed-page policy: timing

independent of previously

accessed row

Spread each request

over all banks, pipeline

accesses to banks.

Statically precomputed

sequences for writes,

reads, write->read,

read->write, refresh.

n

Reineke et al., Berkeley 21

Predictable DRAM Controllers:

Predator (Eindhoven)

Load

B1.R3.C2

Load

B1.R4.C3

Store

B1.R3.C5 …

Predictable Memory

Controller: Predator

Read Pattern Read Pattern Write Pattern R/W Pattern

Closed-page policy: timing

independent of previously

accessed row

Spread each request

over all banks, pipeline

accesses to banks.

Statically precomputed

sequences for writes,

reads, write->read,

read->write, refresh.
 increases access

granularity

Reineke et al., Berkeley 22

Thread 2

Thread 1

Predictable DRAM Controllers:

Predator (Eindhoven) and AMC (Barcelona)

Load

B1.R3.C2

Predictable and/or Composable Arbitration

(e.g. time-division multiple access)

Memory

Controller

Load

B3.R3.C2

Load

B3.R5.C3

Store

B2.R3.C5

? Load

B1.R3.C2

Load

B3.R3.C2

Load

B3.R5.C3

Store

B2.R3.C5

…

Reineke et al., Berkeley 23

Outline

 Introduction

 Precision-Timed ARM (PTARM) Pipeline

 PTARM Memory Hierarchy Principles

 PTARM DRAM Controller

 DRAM Basics

 Related Work: Predator and AMC

 PRET DRAM Controller: Main Ideas

 Evaluation

 Integration into Precision-Timed ARM

Reineke et al., Berkeley 24

PRET DRAM Controller:

Three Innovations

 Expose internal structure of DRAM devices:

 Expose individual banks within DRAM device as

multiple independent resources

 Defer refreshes to the end of transactions

 Allows to hide refresh latency

 Perform refreshes “manually”:

 Replace standard refresh command with multiple

reads

Reineke et al., Berkeley 25

PRET DRAM Controller: Exploiting

Internal Structure of DRAM Module

 Consists of 4-8 banks in 1-2 ranks

• Share only command and data bus, otherwise independent

 Partition into four groups of banks in alternating ranks

 Cycle through groups in a time-triggered fashion

Ban

k 0

Ban

k 1

Ban

k 2

Ban

k 3

Rank 0:

Ban

k 0

Ban

k 1

Ban

k 2

Ban

k 3

Rank 1:

• Successive accesses to

same group obey timing

constraints

• Reads/writes to different

groups do not interfere

Provides four

independent and

predictable resources

Reineke et al., Berkeley 26

PRET DRAM Controller: Exploiting

Internal Structure of DRAM Module

Load

B1.R3.C2

Load

B1.R4.C3

Store

B1.R3.C5 …

PRET DRAM

Controller

Read

Pattern

Read

Pattern

Write

Pattern …

Reineke et al., Berkeley 27

Pipelined Bank Access Scheme

DIMMaddr+cmd

chip select 0

16

 data

chip select 1

x16

Device

16

 data

16

 data

16

 data

x16

Device

x16

Device

x16

Device

x16

Device

x16

Device

x16

Device

x16

Device

64

data

Rank 0 Rank 1

address

I/
O

 R
e

g
is

te
rs

+

 D
a
ta

 I
/OAddress

Register

Control

Logic

Mode
Register

16

data

command

chip select

DRAM Device

BankBankBankBank
Row

Address
Mux

Refresh
Counter

I/O
Gating

DRAM

Array

R
o

w
 D

e
c
o
d

e
r

Sense Amplifiers

and Row Buffer

Column Decoder/
Multiplexer

R
o

w

A
d
d

re
s
s

Bank

CapacitorBit line

Word line

Transistor

Capacitor

Figure1: A dual-ranked dual in-line memory module.

Table 1: Overview of DDR2-400 timing parameters at the example of the Qimonda HYS64T64020EM-2.5-B2.
Para-
meter

Value (in cycles
at 200 MHz)

Description

tRCD 3 Row-to-Column delay: time from row activation to first read or write to a column within that row.
tCL 3 Column latency: time between acolumn access command and the start of data being returned.
tWL tCL − 1 = 2 Write latency: time after write command until first data is available on the bus.
tWR 3 Write recovery time: time between the end of a write data burst and the start of a precharge command.
tWTR 2 Write to read time: time between the end of a write data burst and the start of a column-read command.
tRP 3 Time to precharge the DRAM array before next row activation.
tRFC 21 Refresh cycle time: time interval between a refresh command and a row activation.
tFAW 10 Four-bank activation window: interval in which maximally four banks may be activated.
tAL set by user Additive latency: determines how long posted column accesses are delayed.

Resource/Rank

Cycles

tRCD

0/0 1/1 2/0 3/1 0/0

Command Bus

1/1

...
R

A

S

C

A

S

N

O

P

R

A

S

C

A

S

N

O

P

R

A

S

C

A

S

N

O

P

N

O

P

N

O

P

N

O

P

R

A

S

C

A

S

N

O

P

R

A

S

C

A

S

N

O

P

Rank 0

Resource 0+2

Rank 1

Resource 1+3

R

A

S

C

A

S

Data Bus

C

A

S

Burst from

Rank 0

Posted-
CAS
with

tAL=2

Auto-Precharge

R

A

S

C

A

S

Posted-
CAS

Auto-Precharge
P

R

E

Burst to

Rank 1

R

A

S

P

R

E

Posted-
CAS

Burst from

Rank 0

P

R

E

R

A

S

Auto-Precharge

C

A

S

Posted-
CAS

...

...
R

A

S

...

tCL

tWL tWR

tRP

tRCD

tFAW

N

O

P

Figure 2: The per iodic and pipelined access scheme employed
by the backend. In the example, we per form a read from re-

source 0 (in rank 0), a wr ite to resource 1 (in rank 1), and a
read from resource2 (in rank 0).

DRAM controller isspecific to our DDR2 memory module, thekey
design features areapplicable to other modern memory modules.

4.1 DRAM Controller Backend
The backend views the memory device as four independent re-

sources: each resource consisting of two banks within the same

rank. By issuing commands to the independent resources in a pe-
riodic and pipelined fashion, we exploit bank parallelism and re-
move interference amongst the resources. This is unlike conven-

tional DRAM controllers that view the entire memory device as
one resource. Other partitions of the eight banks would be possi-

ble, as long as all of the banks that are part of a resource belong to
the same rank of the memory module, and each of the two ranks

contains two resources.
Figure2 showsan exampleof thefollowing accessrequests from

the frontend: read from resource 0 in rank 0, write to resource 1 in
rank 1, and read from resource 2 in rank 0. The controller peri-

odically provides access to the four resources every 13 cycles. In
doing so, we exploit bank parallelism for high bandwidth, yet, we

avert access patterns that otherwise incur high latency due to the
sharing of resources within banks and ranks.

The backend translates each access request into a row access
command (RAS), a posted column access command (posted-CAS)

or a NOP. We refer to a triple of RAS, CAS and NOP as an access
slot. In order to meet row to column latency shown in Table 1, the

RAS command and the first CAS command need to be 3 cycles
apart. However, we can see from Figure 2 that if we waited for 3

cycles before issuing the CAS to access the first resource, it would
conflict with the RAS command for accessing the second resource

on the command bus. Instead, we set the additive latency tAL to 2.
This way, the posted-CAS results in a CAS two cycles later within
the DRAM chip. This is shown in Figure 2 as the posted-CAS

appears within its rank 2 cycles after the CAS was issued on the
command bus, preserving the pipelined access scheme.

The row access command moves a row into the row buffer. The
column access command can be either a read or a write, causing a

burst transfer of 8·4 = 32 bytes, which will occupy thedatabusfor
two cycles(as two transfers occur in every cycle). Weuseaclosed-

page policy (also known as auto-precharge policy), which causes
the accessed row to be immediately precharged after performing

the column access (CAS), preparing it for the next row access. If
there are no requests for a resource, the backend does not send any

commands to the memory module, as is the case for resource 3 in
Figure 2.

There is a one cycle offset between the read and write laten-
cies. Given that requests may alternate between reads and writes,

thecontroller inserts aNOPbetween any two consecutiverequests.
This avoids a collision on the data bus between reads and writes.

By alternating between ranks, no two adjacent accesses go to the
same rank. This satisfies the write-to-read timing constraint tWTR
incurred by the sharing of I/O gating within ranks. In addition, we
satisfy the four-bank activation window constraint because within
any window of size tFAW we activate at most four banks due to

the periodic access scheme.
With theclosed-pagepolicy, in caseof awrite, weneed 13 cycles

to access the row, perform a burst access, and precharge the bank
to prepare for the next row access. This is the reason for adding a

NOP after four access slots: to increase the distance between two
access slots belonging to the same resource from 12 to 13 cycles.

The backend does not issue any refresh commands to the memory

READ WRITE READ

Reineke et al., Berkeley 28

PRET DRAM Controller:

“Manual” Refreshes

(refresh latencies not to scale)

 Every row needs to be refreshed every 64ms

 Dedicated refresh commands refresh one row

in each bank at once

 We replace these with “manual” refreshes

through reads

 Improves worst-case latency of short requests

Dedicated refresh commands vs refreshes through reads.

Reineke et al., Berkeley 29

PRET DRAM Controller:

Defer Refreshes

 Refreshes do not have to happen periodically

 Refresh every row at least every 64 ms

 Schedule refreshes slightly more often than

necessary  Enables to defer refreshes

Reineke et al., Berkeley 30

General-Purpose DRAM Controller

 vs PRET DRAM Controller

General-Purpose Controller

 Abstracts DRAM as a

single shared resource

 Schedules refreshes

dynamically

 Schedules commands

dynamically

 “Open page” policy

speculates on locality

PRET DRAM Controller

 Abstracts DRAM as multiple

independent resources

 Refreshes as reads:

shorter interruptions

 Defer refreshes:

improves perceived latency

 Follows periodic, time-

triggered schedule

 “Closed page” policy:

access-history independence

Reineke et al., Berkeley 31

Outline

 Introduction

 Precision-Timed ARM (PTARM) Pipeline

 PTARM DRAM Controller

 DRAM Basics

 Related Work: Predator and AMC

 PRET DRAM Controller: Main Ideas

 Evaluation

 Integration into Precision-Timed ARM

Reineke et al., Berkeley 32

Conventional DRAM Controller (DRAMSim2)

vs PRET DRAM Controller:

Latency Evaluation

Varying Interference: Varying Transfer Size:

Reineke et al., Berkeley 33

PRET DRAM Controller vs Predator:

Analytical Evaluation

Predator:

• abstracts DRAM as

single resource

• uses standard refresh

mechanism

 PRET controller

improves worst-case

access latency of small

transfers

Reineke et al., Berkeley 34

PRET DRAM Controller vs Predator:

Analytical Evaluation

• Less of a difference

for larger transfers

• Predator provides

slightly higher

bandwidth due to

more efficient refresh

mechanism

Reineke et al., Berkeley 35

Outline

 Introduction

 Precision-Timed ARM (PTARM) Pipeline

 PTARM Memory Hierarchy Principles

 PTARM DRAM Controller

 DRAM Basics

 Related Work: Predator and AMC

 PRET DRAM Controller: Main Ideas

 Evaluation

 Integration into Precision-Timed ARM

Reineke et al., Berkeley 36

Precision-Timed ARM (PTARM)

Architecture Overview

 Thread-Interleaved Pipeline for predictable timing

without sacrificing high throughput

 One private DRAM Resource + DMA Unit per

Hardware Thread

 Shared Scratchpad Instruction and Data Memories

for low latency access

Lee, Berkeley 24

Hardware

threadHardware

threadHardware

thread

Resulting PRET Architecture
We have realized this in PTArm,

a soft core on a Xilinx Virtex 5 FPGA

Hardware

thread

registers

scratc

h

pad

memory

I/O devices

Interleaved

pipeline with one

set of registers

per thread

SRAM

scratchpad

shared among

threads

DRAM main

memory,

separate banks

per thread

memory
memory

memory

Note inverted memory

compared to multicore!

Fast, close memory is

shared, slow remote

memory is private!http://chess.eecs.berkeley.edu/pret/

Lee, Berkeley 37

Conclusions and Future Work

 PTARM =

Thread-interleaved pipeline + Scratchpads + Predictable DRAM:

 Predictability without sacrificing throughput

 Temporal isolation between hardware threads

 How to program the inverted memory hierarchy?

Raffaello Sanzio da Urbino – The Athens School

Reineke et al., Berkeley 38

References

Related Work on Memory Controllers:

 M. Paolieri, E. Quiñones, F. Cazorla, and M. Valero, “An analyzable memory controller for hard real-

time CMPs,” IEEE Embedded Systems Letters, vol. 1, no. 4, pp. 86–90, 2010.

 B. Akesson, K. Goossens, and M. Ringhofer, “Predator: a predictable SDRAM memory controller,” in

CODES+ISSS. ACM, 2007, pp. 251–256.

Work within the PRET project:

 [CODES ’11] Jan Reineke, Isaac Liu, Hiren D. Patel, Sungjun Kim, Edward A. Lee, PRET DRAM

Controller: Bank Privatization for Predictability and Temporal Isolation, International Conference on

Hardware/Software Codesign and System Synthesis (CODES+ISSS), October, 2011.

 [DAC ‘11] Dai Nguyen Bui, Edward A. Lee, Isaac Liu, Hiren D. Patel, Jan Reineke, Temporal Isolation

on Multiprocessing Architectures, Design Automation Conference (DAC), June, 2011.

 [Asilomar ‘10] Isaac Liu, Jan Reineke, and Edward A. Lee, PRET Architecture Supporting Concurrent

Programs with Composable Timing Properties, in Signals, Systems, and Computers (ASILOMAR),

Conference Record of the Forty Fourth Asilomar Conference, November 2010, Pacific Grove,

California.

 [CASES ’08] Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Stephen A. Edwards and Edward A.

Lee, "Predictable Programming on a Precision Timed Architecture," in Proceedings of International

Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES), Piscataway,

NJ, pp. 137-146, IEEE Press, October, 2008.

http://chess.eecs.berkeley.edu/pubs/851.html
http://chess.eecs.berkeley.edu/pubs/851.html
http://chess.eecs.berkeley.edu/pubs/851.html
http://chess.eecs.berkeley.edu/pubs/851.html
http://chess.eecs.berkeley.edu/pubs/851.html
http://chess.eecs.berkeley.edu/pubs/839.html
http://chess.eecs.berkeley.edu/pubs/839.html
http://chess.eecs.berkeley.edu/pubs/839.html
http://chess.eecs.berkeley.edu/pubs/839.html
http://chess.eecs.berkeley.edu/pubs/839.html
http://chess.eecs.berkeley.edu/pubs/803.html
http://chess.eecs.berkeley.edu/pubs/803.html
http://chess.eecs.berkeley.edu/pubs/803.html
http://chess.eecs.berkeley.edu/pubs/803.html
http://chess.eecs.berkeley.edu/pubs/803.html
http://chess.eecs.berkeley.edu/pubs/803.html
http://chess.eecs.berkeley.edu/pubs/803.html
http://chess.eecs.berkeley.edu/pubs/475.html
http://chess.eecs.berkeley.edu/pubs/475.html
http://chess.eecs.berkeley.edu/pubs/475.html
http://chess.eecs.berkeley.edu/pubs/475.html
http://chess.eecs.berkeley.edu/pubs/475.html

