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Predictability and Temporal Isolation

o Many embedded systems L
are real-time systems

> Need for
Timing Predictability

Crankshaft-synchronous tasks,

o Trend towards integrated
architectures:

> Need for
Temporal Isolation

Reaction in <45 uSec

~Audio + video playback
@ with latency and
| bandwidth constraints
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Pipelining:

Hazards

Data Hazard (computed branch)

Control Hazard (conditional branch)
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16' Sign- 32
extend
Data Hazard (IR)

Data Hazard (Memory read/ALU result)

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.
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Forwarding helps, but not all the time...

LD RL, 45(r?2)
DADD R5, Rl, R7
BE R5, R3, RO
ST R5, 48(R2)

Unpipelined  [ERIENMWERNEMNUERNEMNEREMW

EREMW
The Dream 'F|D|E[M]|W]
EHREMW
EHREMW

FID|E MW,
The Reality F|D| Memory Hazard

F[D] Data Hazard
EHBEIEMW Branch Hazard
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® Our Solution: Thread-interleaved Pipelines

71 EREMYEREMW

2. ERNEMUEREMW

3 ENEMUEEREMW

T4: ERENMNERE M
T5: FIDIEIMIWIFIDIEIMIW|

Each thread occupies only one stage of the pipeline at a time

- No hazards; perfect utilization of pipeline

- Simple hardware implementation (no forwarding, etc.)

—> Latency of instructions independent of micro-architectural state
- Microarchitectural timing analysis becomes trivial

Drawback: reduced single-thread performance
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Second Problem: Memory Hierarchy

C Memory Ob
a us
S c B0 Memory I/O devices
Registers | .
e
Disk
memory
Register CaChe Memory reference
reference reference reference
Size: 500 bytes 64 KB 1GB 1TB
Speed: 250 ps 1ns 100 ns 10 ms

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.

* Regqister file is a temporary memory under program
control.

« Cache is a temporary memory under hardware control.

PRET principle: any temporary memory Is under program

control. Reineke et al., Berkeley 9



PRET principles implies Scratchpad Iin

e place of Cache

registers

Interleaved SRAM
pipeline with one scratchpad
set of registers shared among
per thread threads
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Memory Hierarchy:
Dynamic RAM vs Static RAM

C Memory Ob
a us
oS c bue Memory I/O devices
Registers | "
e
Disk
memory
Reg|ster CaChe Memory reference
reference reference reference
Size: 500 bytes 64 KB 1GB 1TB
Speed: 250 ps 1ns 100 ns 10 ms
SRAM DRAM

 Fast = Low Latency
« Low Capacity

Slow = High Latency
High Capacity

from Hennessy and Patterson, Computer Architecture: A Quantitative Approach, 2007.
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DRAM Cell

for DDR2/DDR3)

therefore “dynamic”

Leaks charge = Needs to
be refreshed (every 64ms

v

Word line
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Bit line

Transistor
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Dynamic RAM Organization Overview

DRAM Device
Set of DRAM banks +
« Control logic
« 1/O gating
Accesses to banks can be pipelined,
however I/O + control logic are shared
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Collection of DRAM Devices
* Rank = groups of devices
that operate in unison
* Ranks share
data/address/command
bus
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DRAM Memory Controller

Translates sequences of memory accesses by Clients (CPUs and 1/O) into
legal sequences of DRAM commands

Needs to obey all timing constraints
Needs to insert refresh commands sufficiently often

Needs to translate “physical” memory addresses into
row/column/bank tuples

CPUA1
Interconnect Memory DRAM
CPU n|<«®| +Arbitration Controller Module
1/O

Reineke et al., Berkeley 14



O Dynamic RAM Timing Constraints

DRAM Memory Controllers have to conform to different timing constraints
that define minimal distances between consecutive DRAM commands.

Almost all of these constraints are due to the sharing of resources at
different levels of the hierarchy:

dddddddd DIMM
c | DRAM Device T —_— = xi6 <'—l\ FH xe | L
N — D D
Word line Bank ontro == Vo L Vat
B ] <o Logic Bank = —
J 3 Row  |— T —
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28 o= YY1 |00 chipselest Mode Mux e ) P oxas [ L]
§§ g Register n e | ( Device ) ( o
S % —
& Refresh ) e e ) -
it li ~— Capacitor Counter I AT B ae ] B
Bit line \ T P | Sense Amplifiers o — e, | o L/ e
and Row Buffer Address 80 | = 75 |G AR
address B = data , ~
H Register 110 8 L3 =
Transistor catng [ &8
o+ Lol 16 < L)
A = data, | i1 pevice ) oevice <
ccccccccccc i
lllllllllll
’ Rank 0 Rank 1

Needs to insert Banks within a

Rows within a

refresh
commands
sufficiently often

bank share
sense amplifiers

DRAM device
share 1/O gating
and control logic

Different ranks
share

data/address/comm
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General-Purpose DRAM Controllers

o Schedule DRAM commands dynamically

o Timing hard to predict even for single client:

Timing of request depends on past requests:
Request to same/different bank?
Request to open/closed row within bank?
Controller might reorder requests to minimize latency

Controllers dynamically schedule refreshes

o Non-composable timing. Timing depends on behavior
of other clients:

They influence sequence of “past requests”
Arbitration may or may not provide guarantees

Reineke et al., Berkeley 16



N—

Ww &cces
| SYKe

Memory
Controller
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B1.R3

RAS
B1.R3

General-Purpose DRAM Controllers

L Load
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O General-Purpose DRAM Controllers
Thread 1 Thread 2
Load Load Store Load Load Store
B1.R3.C2 B2.R4.C3 B4.R3.C5 B3.R3.C2 B3.R5.C3 B2.R3.C5
Arbitration
Load Load Load Load Store Store 1 ’
B3.R3.C2 B1.R3.C2 B2.R4.C3 B3.R5.C3 B4.R3.C5 B2.R3.C5
[ |

Memory
Controller

7

Reineke et al., Berkeley 18



Outline

o Introduction
o Precision-Timed ARM (PTARM) Pipeline
o PTARM Memory Hierarchy Principles
o PTARM DRAM Controller
DRAM Basics

Related Work: Predator and AMC
PRET DRAM Controller: Main Ideas
Evaluation

Integration into Precision-Timed ARM

Reineke et al., Berkeley 19



Closed-page policy: timing
independent of previously
accessed row

CPU1

CPU n

/0

a

7

Predictable DRAM Controllers:
Predator (Eindhoven) and AMC (Barcelona)

Spread each request
over all banks, pipeline
accesses to banks.

Statically precomputed
seqguences for writes,
reads, write->read,

read->write, refresh.

et

Interconnect
+ Arbitration

Memory
Controller

DRAM
Module

[

Predictable and/or

composable arbitration:

 Predator: CCSP
« AMC: TDMA
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Predictable DRAM Controllers:
Predator (Eindhoven)

Load Load
B1.R3.C2 B1.R4.C3

Predictable Memory
Controller: Predator

Vv

Closed-page policy: timing Spread each request Statically precomputed
independent of previously over all banks, pipeline sequences for writes,
accessed row accesses to banks. reads, write->read,

: read->write, refresh.
- Increases access

granularity
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Predictable DRAM Controllers:
Predator (Eindhoven) and AMC (Barcelona)

Thread 1 Thread 2

Load Load Load Store
B1.R3.C2 B3.R3.C2 B3.R5.C3 B2.R3.C5

| —

Predictable and/or Composable Arbitration
(e.g. time-division multiple access)

Load Load Load Store 1 ’
B1.R3.C2 B3.R3.C2 B3.R5.C3 B2.R3.C5
[ |

Memory
Controller

J\ /L Reineke et al., Berkeley 22
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PRET DRAM Controller:
Three Innovations

o Expose internal structure of DRAM devices:

Expose individual banks within DRAM device as
multiple independent resources

CPU1 |
A > DRAM ]
Interconnect || PRET DRAM Bank
CPU1 |[«%| 1 Arbitration |q—p| Controller
A/V <>

o Defer refreshes to the end of transactions
Allows to hide refresh latency
o Perform refreshes “manually”:

Replace standard refresh command with multiple
reads Reineke et al., Berkeley 24



PRET DRAM Controller: Exploiting

O
Internal Structure of DRAM Module
Consists of 4-8 banks in 1-2 ranks
Share only command and data bus, otherwise independent
Partition into four groups of banks in alternating ranks
Cycle through S in a time-triggered fashion
» Successive accesses to
Rank 0: same group obey timing
constraints
« Reads/writes to different
groups do not interfere
Rank 1: Provides four

gan | [ Ban zan ) [ Ban Independent and

ko || k1 k2 || k3 predictable resources
Reineke et al., Berkeley 25



Load Load
B1.R3.C2 B1.R4.C3

Read
Pattern

PRET DRAM
Controller

Read
Pattern

4

PRET DRAM Controller: Exploiting
Internal Structure of DRAM Module
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Pipelined Bank Access Scheme
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PRET DRAM Controller:
“Manual” Refreshes

o Every row needs to be refreshed every 64ms

o Dedicated refresh commands refresh one row
In each bank at once

o We replace these with “manual” refreshes
through reads

Improves worst-case latency of short requests

— >
time

Dedicated refresh commands vs refreshes through reads.

\/
g L e e i o o o o g

. im
(refresh latencies not to scale) time
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PRET DRAM Controller:
Defer Refreshes

o Refreshes do not have to happen periodically
o Refresh every row at least every 64 ms

o Schedule refreshes slightly more often than
necessary - Enables to defer refreshes

0 1 2 33 88991 00

— I il i f—
: —— e time
0 /! 2 3 8191 0

—] ovA [—] I /AVA| I I >

time
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General-Purpose DRAM Controller
vs PRET DRAM Controller

General-Purpose Controller PRET DRAM Controller

o Abstracts DRAM as a o Abstracts DRAM as multiple
single shared resource iIndependent resources

o Schedules refreshes o Refreshes as reads:
dynamically shorter interruptions

o Defer refreshes:
Improves perceived latency

o Schedules commands o Follows periodic, time-
dynamically triggered schedule

o “Open page” policy o “Closed page” policy:
speculates on locality access-history independence

Reineke et al., Berkeley 30
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latency [cycles]

Conventional DRAM Controller (DRAMSImM?2)
vs PRET DRAM Controller:
Latency Evaluation

Varying Interference: Varying Transfer Size:
3,000 N 3,000 [ | —*— Conventional controller -
. —o—  PRET controller
8
Q
2,000 |- . 2 2,000 |- N
5
=
2
1,000 |- - = 1,000 |- .
(D]
b
3
>
0% ‘ | ‘1 1‘ ‘2 2‘ ‘ - v 0 7\ | | | | |
0 0-5 & & s 0 1,000 2,000 3,000 4,000

Interference [# of other threads occupied] :
transfer size [bytes]

—o— 40968 transfers, conventional controller
—+—  4096B transfers, PRET controller
—o— 1024B transfers, conventional controller
—=— 1024B transfers, PRET controller
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latency [cycles]

PRET DRAM Controller vs Predator:

Analytical Evaluation

150 /
1 25 | | Private resources in backend ’P
100 | “Maljual” refreshes |

759 o - ] i

50 |

4
25
0 | | | |
32 64 96 128 160 192 2924

size of transfer [bytes]

—e— Shared Predator BL = 4 w/ refreshes

—6— DLj 4(x): Shared PRET BL = 4 w/ refreshes
—+— DL" (x): PRET BL = 4 w/ refreshes

—— DL’ (z): PRET BL = 4 w/o refreshes

256

Predator:

e abstracts DRAM as
single resource

« uses standard refresh
mechanism

= PRET controller
Improves worst-case
access latency of small
transfers
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latency [cycles]

300

600

400

PRET DRAM Controller vs Predator:

Analytical Evaluation

Benefit of burst length 8 over burst length 4 | _ _ /7 %" ’

256 512 768 1,024 1,280 1,536 1,792 2,048

size of transfer [bytes]

—e— Shared Predator, BL = 4, accounting for all refreshes
—— DL"(z): PRET, BL = 4, accounting for all refreshes
—e— Shared Predator, BL. = 8, accounting for all refreshes
—— DL" (x): PRET, BL = 8, accounting for all refreshes

Less of a difference
for larger transfers
Predator provides
slightly higher
bandwidth due to
more efficient refresh
mechanism
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Precision-Timed ARM (PTARM)
Architecture Overview http://chess.eecs.berkeley.edu/pret/

I
Hardware \.
thread

I
registers

scratc :
h memory —{ I/O devices }
pad

Interleaved SRAM DRAM main
pipeline with one scratchpad memory,
set of registers shared among separate banks
per thread threads per thread

o Thread-Interleaved Pipeline for predictable timing
without sacrificing high throughput

o One private DRAM Resource + DMA Unit per
Hardware Thread

o Shared Scratchpad Instruction and Data Memories
for low latency access

Reineke et al., Berkeley 36



Conclusions and Future Work

o PTARM =
Thread-interleaved pipeline + Scratchpads + Predictable DRAM:

Predictability without sacrificing throughput
Temporal isolation between hardware threads

o How to program the inverted memory hierarchy?

Raffaello Sanzio da Urbino — The Athen_s School

! - g
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