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m When jobs (usually with the same computation requirement) are
released recurrently, these jobs can be modeled by a recurrent task

m Periodic Task 7;:

» A job is released exactly and periodically by a period T;

» A phase ¢; indicates when the first job is released

» A relative deadline D; for each job from task 7;

» (¢;, G, T;, D;) is the specification of periodic task 7;, where C; is the
worst-case execution time. When ¢; is omitted, we assume ¢; is O.
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m When jobs (usually with the same computation requirement) are
released recurrently, these jobs can be modeled by a recurrent task

m Periodic Task 7;:

» A job is released exactly and periodically by a period T;

» A phase ¢; indicates when the first job is released

» A relative deadline D; for each job from task 7;

» (¢;, G, T;, D;) is the specification of periodic task 7;, where C; is the
worst-case execution time. When ¢; is omitted, we assume ¢; is O.

m Sporadic Task 7;:

» T; is the minimal time between any two consecutive job releases

» A relative deadline D; for each job from task 7;

» (G, T;, D;) is the specification of sporadic task 7;, where C; is the
worst-case execution time.
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For a task set, we say that the task set is with
m /mplicit deadline when the relative deadline D; is equal to the period
T;, i.e., D; = T;, for every task 7;,
m constrained deadline when the relative deadline D; is no more than the
period T;, i.e., D; < T;, for every task 7;, or

m arbitrary deadline when the relative deadline D; could be larger than
the period T; for some task ;.
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m The jobs of task 7; are denoted J; 1, Jio,.......

m Periodic Tasks:

» Synchronous system: Each task has a phase of 0.
» Asynchronous system: Phases are arbitrary.

m Hyperperiod: Least common multiple (LCM) of T;.

m Task utilization of task 7;: u; = %

m System (total) utilization: U(T) := > 7 ui.
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Schedulability Analysis for Static-Priority Scheduling
m Utilization-Based Analysis (Relative Deadline = Period)
m Demand-Based Analysis
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Static-Priority Scheduling e e
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m Different jobs of a task are assigned the same priority.

» 7, is the priority of task ;.
» HP; is the subset of tasks with higher priority than ;.
» Note: we will assume that no two tasks have the same priority.

m We will implicitly index tasks in decreasing priority order, i.e., 7; has
higher priority than 7 if i < k.
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m Different jobs of a task are assigned the same priority.
» 7, is the priority of task ;.
» HP; is the subset of tasks with higher priority than 7;.
» Note: we will assume that no two tasks have the same priority.

m We will implicitly index tasks in decreasing priority order, i.e., 7; has
higher priority than 7 if i < k.
m Which strategy is better or the best?

» largest execution time first?
» shortest job first?

» least-utilization first?

» most importance first?

» least period first?
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Rate-Monotonic (RM) Scheduling UNiveRsiTy Bl

(Liu and Layland, 1973)

Priority Definition: A task with a smaller period has higher priority, in
which ties are broken arbitrarily.

Example Schedule: 7 =(1,6,6), » = (2,8,8), 13 = (4,12,12).
[(Ci7 Ti7 Dl)]
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Deadline-Monotonic (DM) Scheduling (Leung and  Zvisiy 2
Whitehead)

COMPUTER SCIENCE
Priority Definition: A task with a smaller relative deadline has higher
priority, in which ties are broken arbitrarily.

Example Schedule: 71 = (2,8,4), » = (1,6,6), 3 = (4,12,12).
[(Ci7 Ti7 Dl)]
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Example Schedule: 71 = (2,4,4), m» = (5,10, 10)

g8 R N MG R

2
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| Eale
0 2 4 6 8 10 12 14 16 18 20

The above system is schedulable.
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Example Schedule: 71 = (2,4,4), m» = (5,10, 10)

Tllﬁl Iﬁl I 7 In I n]

0 2 4 6 8 10 12 14 16 18 20
-l [ ]
8 10 12 1 8 20

0 2 4 6 4 16 1

The above system is schedulable.
No static-priority scheme is optimal for scheduling periodic tasks: A

deadline will be missed, regardless of how we choose to (statically)
prioritize 74 and 7o.

Corollary

Neither RM nor DM is optimal.
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A critical instant of a task 7; is a time instant such that:

@ the job of 7; released at this instant has the maximum response time
of all jobs in 7;, if the response time of every job of 7; is at most D;,
the relative deadline of 7;, and

B the response time of the job released at this instant is greater than D;
if the response time of some job in 7; exceeds D;.

Informally, a critical instant of 7; represents a worst-case scenario from 7;'s
standpoint.

Jan Reineke Schedulability Analysis July 16, 2015 12 / 57
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Theorem )

[Liu and Layland, JACM 1973] A critical instant of task 7; for a set of
independent, preemptable periodic tasks with relative deadlines equal to their
respective periods is to release the first jobs of all the higher-priority tasks

at the same time.
L _ A
We are not saying that 1, ..., 7; will all necessarily release their first jobs

at the same time, but if this does happen, we are claiming that the time of

release will be a critical instant for task ;.
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t1 ¢ tr
We will show that shifting the release time of tasks together will

increase the response time of task 7;.

m Consider a job of 7;, released at time t/, with completion time tg.
m Let t_1 be the latest idle instant for m1,...,7;_1 at or before tg.

m Let J be 7;'s job released at t'.

Jan Reineke Schedulability Analysis July 16, 2015 14 / 57
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t1 ¢ tr
We will show that shifting the release time of tasks together will

increase the response time of task 7;.

m Moving J from t' to t_1 does not decrease the completion time
of J.
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We will show that shifting the release time of tasks together will

increase the response time of task 7;.

m Releasing 7 at t_; does not decrease the completion time of J.
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We will show that shifting the release time of tasks together will
increase the response time of task 7;.

m Releasing 7 at t_; does not decrease the completion time of J.

m Repeating the above movement and proves the criticality of the
critical instant
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A system of periodic tasks harmonic (also: simply periodic) if for every pair

of tasks 7; and 74 in the system where T; < Ty, Tx is an integer multiple
of T,'.
A

i

For example: Periods are 2,6,12, 24,

Theorem )

[Kuo and Mok]: A system T of harmonic, independent, preemptable, and
implicit-deadline tasks is schedulable on one processor according to the RM

algorithm if and only if its total utilization U = ereT% is less than or
J

equal to one.
. i
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The case for the “only-it” part is similar and left as an exercise.

A A AN
i | |
AN AN AN

il R E 4 L1

Suppose for a contradiction that 7 is not schedulable and that 7; misses its
deadline.

m The response time of 7; is larger than D;.

m By critical instants_ releasing all the tasks 7, m,...,7; at time 0 will
lead to a response time of 7; larger than D;.
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As the schedule is work-conserving, we know that from time 0 tocsc)erlrl\JngilfNCE

the whole system is executing jobs. Therefore,

D; < the workload released in time interval [0, D;)

— Z C; - ( the number of job releases of 7; in time interval [0, D;))
j:l

_ZC [1 ZC

*

where =" is because D; = T; is an integer multiple of T; when j <.
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As the schedule is work-conserving, we know that from time 0 tocsc)rrlrl\Jng)C,lfNCE

the whole system is executing jobs. Therefore,

D; < the workload released in time interval [0, D;)

— Z C; - ( the number of job releases of 7; in time interval [0, D;))
j:l

_ZC [1 ZC

*

where =" is because D; = T; is an integer multiple of T; when j <.

By canceling D;, we reach the contradiction by having
1< Z S < Z S < 1.
J €T J
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Optimality Among Static-Priority Algorithms sy

Theorem )

A system 7T of independent, preemptable, synchronous periodic tasks that
have relative deadlines equal to their respective periods can be feasibly sched-
uled on one processor according to the RM algorithm whenever it can be

feasibly scheduled according to any static priority algorithm.
- A
We will only discuss systems with 2 tasks, and the generalization is left as

an exercise.

m Suppose that T;1 = D; < D, = T, and 7 is with higher priority.

m We would like to swap the priorities of 71 and 7.

m Without loss of generality, the response time of 71 after priority
swapping is always equal to (or no more than) C;.

m By the critical instant theorem, we only need to check response time
of the first job of 7 during a critical instant.

m Assuming that non-RM priority ordering is schedulable, the critical
instant theorem also implies that C; + G < Tj.

Jan Reineke Schedulability Analysis July 16, 2015 21 / 57
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After swapping (71 has higher priority), there are two cases:

There is sufficient time to complete all F jobs of 71 before the second job arrival
of 75, where F = {%J In other words, C; + F - T1 < T».

o S S
FT; m
NG
By (1 + G < Tq, we have
F(C1+C2)§F'T1
PPloFG+G<F- Ty

(F+1)G+G<F - T1+G c‘fz_
=(F+1)G+G< T

(F+1)C + G < Tp must
hold.

Jan Reineke Schedulability Analysis July 16, 2015 22 / 57
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After swapping (71 has higher priority), there are two cases:

Case 2

The F-th job of 71 does not complete before the arrival of the second job of 7.
In other words, C; + F - T; > T», where F = {EJ

T
] 1 ) )
I | [ [ FI7_ [ [ |
1 a2
f f N f f f f u i
By (i + (& < Tq, we have

< .
To be schedulable . F(Gi+G)<F- Ty
FC; + G, < FT; must hold. “=FG+G<F-T

-

Jan Reineke Schedulability Analysis July 16, 2015 23 / 57
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We have shown that if any two-task system with implicit deadlines

(D; = T;) is schedulable according to arbitrary fixed-priority assignment,
then it is also schedulable according to RM.

Exercise: Complete proof by extending argument to n periodic tasks.

Note: When D; < T; for all tasks, DM (Deadline Monotonic) can be

shown to be an optimal static-priority algorithm using similar argument.
Proof left as an exercise.
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m [ask utilization:

m System (total) utilization:

U(T) = Z =

T,ET

A task system 7T fully utilizes the processor under scheduling algorithm A if
any increase in execution time (of any task) causes A to miss a deadline.

UB(A) is the utilization bound for algorithm A:

~—>UB(A) :=| [{U€R|VT.U(T) < U= T is schedulable under A}
= I_I{U ) | T fully utilizes the processor under A}

Jan Reineke Schedulability Analysis July 16, 2015 25 / 57
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Feasible Unsure Infeasible
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Theorem )

[Liu and Layland] A set of n independent, preemptable periodic tasks with
relative deadlines equal to their respective periods can be scheduled on a
processor according to the RM algorithm if its total utilization U is at most

n(2% — 1). In other words,

UB(RM, n) = n(27 — 1) > 0.693.

- ’J
n UB(RM,n) n UB(RM, n)
2 0.828 3 0.779
4 0.756 5 0.743
6 0.734 7 0.728
8 0.724 9 0.720
10 0.717 — 00 In2>0.693
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T T
RM Bound
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Note: The original proof for this theorem by Liu and Layland is not correct.
For a corrected proof, see R. Devillers & J. Goossens at
http://www.ulb.ac.be/di/ssd/goossens/lub.ps. Note the proof we
present is a bit different than the one presented by Buttazzo's textbook.
Without loss of generality (why?), we will only consider task sets with
distinct periods, i.e., T1 < To < --- < T,. We will present our proof
sketch in two parts:

@ First, we consider the special case where T, < 2Tj.

© Second, we show how to relax this constraint.

Jan Reineke Schedulability Analysis July 16, 2015 29 / 57



Proof Sketch: Difficult-To-Schedule AEEIN
Definition \
A task set T, is called difficult-to-schedule under scheduling algorithm A if
T, fully utilizes the processor if scheduled under A.

S 'J

Our Strategy

m We seek the most difficult-to-schedule task set 7, for n tasks:
A task set that is difficult-to-schedule with the minimal utilization.

m We derive a tight lower bound on the utilization of the most
difficult-to-schedule task set 7, in terms of n, the UB(RM, n).

Jan Reineke Schedulability Analysis July 16, 2015 30 / 57
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@ For a task set with given periods, define the execution times for the
most difficult-to-schedule task set.

B Show that any difficult-to-schedule task set whose execution times
differ from those in step 1 has a greater utilization than the most
difficult-to-schedule task set provided in step 1.

© Compute a closed-form expression for UB(RM, n).

Jan Reineke Schedulability Analysis July 16, 2015 31 /57
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Suppose 7," is a task set with T, <2T; and

Ck:Tk_|_1—Tk fork:1,2,...,n—1
n—1
Ch=T,— 22 Ck =2T1 — T,. (Because: ZZ;} Co =Th— Th)

k=1
1 1

IN

Such a task set 7, is the most difficult-to-schedule task set.

[\

Jan Reineke Schedulability Analysis July 16, 2015 32 / 57
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Proof of the Most Difficult-to-Schedule Statement vy 5=

COMPUTER SCIENCE

Proof strategy:

We show that the difficult-to-schedule task set given on the previous slide
can be transformed into any difficult-to-schedule task set without
decreasing the task set's utilization:

Starting with the highest priority task and working our way down to the
lowest priority task, we incrementally modify the execution times of 7 to
match any other difficult-to-schedule task set, and for each modification,
utilization does not decrease.

If we need to increase (decrease) the execution time of task 7;, then we

compensate for this by decreasing (increasing) the execution time of some
Tk, where k > |.

Jan Reineke Schedulability Analysis July 16, 2015 33 /57
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Increase by A

Let’s increase the execution of some task 7; (i < n) by A (A > 0).

@: Tivi—Ti+A=C+ A.

To keep the processor busy up to T,, we can decrease the execution time
of a task 74 (k > i) by A.

Cl = Ce — A.

Since T; < Ty, the utilization of the above task set 7. is no less than the
original task set 7. by

U(T}) = U(T3) =| 7 - 7 = 0

Jan Reineke Schedulability Analysis July 16, 2015 34 / 57
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Decrease by A

Let's decrease the execution of some task 7; (i < n) by A (A > 0).

Cl = T,'_|_1—T,'—A:C,'—A.

1

To keep the processor busy up to T,, we can increase the execution time of
a task 7 (k > 1) by 2A. (Why 2A7)

C;( = C, + 2A.

Since T, < 2T;, the utilization of the above task set 7, is no less than the
original task set 7, by

Jan Reineke Schedulability Analysis July 16, 2015 35 /57
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The Utilization of the Most Difficult-to-Schedule Task Set

m Utilization of 7, for given task periods: C:

Q

Let x; be T’Tfl o e 9_{75 4
UTy) = =+ Y e = 3 o ()

=1 i=1
n-l o — )’w.‘:‘\ v
r|"1 +(ZX’)_” . 1~ &R
i=1 Xi —— - 'T_ <
T Ve
m Which task periods minimize the utilization? 1 V

By getting partial derivatives of U(7,") to the variables, we know that U(7,) is
minimized when

OU(Ty) _ | _ 2B/ _ | 2

= — =0,YVk=1,2 n—1
b n—l ] 9 9 9 o 0 oy .
OXk (N7 1X,) PA VY
m Therefore, all x; need to be equal for k =1,2,....n—1: xy = x2o = -+ = Xp—1:
2 n 1
i=1 Xi
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. L. -
m By substituting x; = 2» into our utilization formula, we have

U(T) < n(27 — 1)
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Strategy

m Suppose that 7, is a difficult-to-schedule task set with n tasks.

m We are going to transform any difficult-to-schedule task set 7,, with n
tasks and T, > 2T; for some i to 7, such that

@ the period T, in T is no more than twice of Ty in 7., and
8 U(T,) > U(7y).

Transform T, step-by-step to get 7.:
m Find a task 74 in task set T, with /T, < T, < ({+1)T, and £ is an
integer that is at least 2.
m Create a task 7/, such that the period is T, and the execution time C;
is C, + (f — 1)Ck.

m Create a task 7, such that the period is /Ty and the execution time
//< IS Ck.
mLet 7, be T\ {7k, n} U {1, 7}}

Jan Reineke Schedulability Analysis July 16, 2015 38 / 57
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Tlil\ | T 1 I 1 T 1
7_,/14\ I
0T T,
Conditions:

(T < Tph <(l+1)T) with £ > 2.

B 7.=T,C.=C,+({—1)Ccand T, =T, and C, = Cy.
Results: since T, < T,, we know
G, G (-1G+GCG G

U(Ta) = U(Ta) = =+ T T
1 1
= (ET/(_ T,,) (5—1)Ck>0
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m Moreover 7, above is also a difficult-to-schedule task set.

m By repeating the above procedure, we can transform to a task set 7,
with T] < 2T] without increasing its utilization.

This concludes the proof of the following theorem:

Theorem )

[Liu and Layland, JACM 1973] A set of n independent, preemptable periodic
tasks with relative deadlines equal to their respective periods can be sched-
uled on a processor according to the RM algorithm if its total utilization U
is at most n(2% — 1). In other words,

UB(RM, n) = n(2» — 1) > 0.693.

lim UB(RM,n) = lim n(2n —1) = In2 > 0.693

n— o0 n— 00
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m If the total utilization is larger than 0.693 but less than or equal to 1,
the utilization-bound schedulability test cannot provide guarantees for

schedulability or unschedulability.

m Sometimes, we can manipulate the periods such that the new task set
is a harmonic task set and its schedulability can be used.
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Theorem )

[Bini and Buttazzo, ECRTS 2001] A system of n independent, preemptable
periodic tasks with relative deadlines equal to their respective periods can
be scheduled on a processor according to the RM algorithm if

—1(Ui+1) <2

A
Note that this is also only a sufficient schedulability test.
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Recall Most Diftficult-to-Schedule Task Set UNIVERs Y B

COMPUTER SCIENCE

Suppose 7," is a task set with T, < 2T; and

Ck:Tk+1—Tk fork:1,2,...,n—1
n—1

Co=Tn—2> GC=2T1-T,
k=1

Let x; be ’+1
lFor1_12 ,n—1 wehave Ui=x,— 1= U; +1 = x,.
= U,,:zﬁ—1:»U,,+1:2%.

T2 13 Tn \ ZE
T Tht Th
2.

N_, (Ui +

Jan Reineke Schedulability Analysis July 16, 2015 43 / 57



I ol . SAARLAND :
Hyperbolic Bound vs Utilization Bound UNIVERSITY

COMPUTER SCIENCE

1 I ' J T

hyperbolic analysis

least upper bound -------
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Schedulability Analysis for Static-Priority Scheduling

m Demand-Based Analysis

Schedulability Analysis for Dynamic-Priority Scheduling
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Necessary and Sufficient RM-Schedulability ONIVERS 1Ty Ol
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m Time-demand analysis (TDA) was proposed by Lehoczky, Sha, and
Ding.

m TDA can be applied to produce a schedulability test for any
fixed-priority algorithm that ensures that each job of every task
completes before the next job of that task is released.

m For some important task models and scheduling algorithms, this
schedulability test is necessary and sufficient.
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Schedulability Condition oriversiTy B

COMPUTER SCIENCE

The time-demand function W;(t) of the task 7; is defined as follows:
i1,
Wi(t) =G+ ) H C.
j=1'

Theorem )

A system T of periodic, independent, preemptable tasks is schedulable on
one processor by algorithm A if it holds that:

Ve T Jtwith 0 <t < Djand Wi(t) <t

This condition is also necessary for synchronous, periodic task sets and also
sporadic task sets.

'

A
Note that this holds for implicit-deadline and constrained-deadline task
sets. The sufficient condition can be proved by contradiction.
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How to Use TDA? RV o

COMPUTER SCIENCE

The theorem of TDA might look strong as it requires to check all the times
t with 0 < t < D; for a given 7;. There are two ways to avoid this:

m lterate using t(k + 1) := W;(t(k)), starting with t(0) := Z}Zl G,
and stopping when, for some ¢, t(£) = W;(t(¢)) or t(£) > D;.

m Only consider t € {¢T; —€}1<j<i e NT, where ¢ is a constant
close to 0. That is, only consider t at which a job of higher-priority

tasks arrives.
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Complexity of TDA Analysis vy B

COMPUTER SCIENCE

For analyzing whether task 7; can meet the timing constraint, the
complexity is O(iD;).
m It is polynomial time if the input is in the unary format. That is, when
D; is 6, the input is 111111 instead of 110 in the binary format.
m It is exponential time in the binary format.

m Formally, this is called pseudo-polynomial time complexity.

Eisenbrand and Rothvoss [RTSS 2008]: Fixed-Priority Real-Time Scheduling:
Response Time Computation Is A P-hard.

A
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Schedulability Analysis for Dynamic-Priority Scheduling
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COMPUTER SCIENCE

Theorem )

Liu and Layland: A task set 7 of independent, preemptable, periodic tasks
with relative deadlines equal to their periods can be feasibly scheduled (under
EDF) on one processor if and only if its total utilization U is at most one.
m The only if part is obvious: If U > 1, then some task clearly must miss
a deadline. So, we concentrate on the if part.

m We prove the contrapositive, i.e., if 7 is not schedulable, then U > 1.

> Let J;i x be the first job to miss its deadline.
> Let t.; be the last idle instant before d; x, the absolute deadline of J; .
» t_q1 could be 0 if there is no idle time.

(cont.)

L 4
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Proof of Utilization-Bound Test for EDF oniversTy

(CONMPIITER QPIFRIPE
Proof.

Because J; x missed its deadline, we know that

di k — t_1 < demand in [t_1, d; x) by jobs with deadline no more than d; 4

— Z Cr

a>t1,d<d; «

" |di—t
Z{’ijtlJCf

J=1

" dik—t 1
Yyl
j=1 ’
By cancelling d; x — t_1, we conclude the proof by
n C
1<) =2 =U.
>
j=1
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SAARLAND piilg

Proof of Utilization-Bound Test for EDF UniversiTy B

(CONMPIITER QPIFRIPE
Proof.

Because J; x missed its deadline, we know that

di k — t_1 < demand in [t_1, d; k) by jobs with deadline no more than d; x

- Z C This proof is actually
A Zt-1,dk<dj k also valid if relative
. dik — t-1 deadlines are larger
-3 C .
: @ than periods.
J=1

n
dix —t_1
Yyt
j=1 ’
By cancelling d; x — t_1, we conclude the proof by
n
C:
1<) =2 =U.
>4
j=1
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Theorem )

A task set T of independent, preemptable, periodic tasks with relative dead-

lines less than or equal to their periods can be feasibly scheduled (under
EDF) on one processor if
> &

" d
Note: This theorem only provides a sufficient condition.
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Necessary and Sufficient Conditions UNIVERSITY B

Theorem )

Define demand bound function dbf(7;, t) as

a/bf(T,-,t):max{o,V+ - J}-Cizmax{o,r J+1}.c,-.

T;

A task set T of independent, preemptable, periodic tasks with relative dead-

lines equal to or less than their periods can be feasibly scheduled (under
EDF) on one processor if and only if VL >0, ", dbf(7;, L) < L.

[

4
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m The processor demand in time interval [t1, t2] is the demand that must
be finished in interval [t1, t]. That is, only jobs that arrive no earlier
than t; and have absolute deadline no more than t, are considered.

m The processor demand gj([t1, t2]) contributed by task 7; is

gi([t1, &2]) = G - max{O, Vz o ;’,-Di - ¢iJ B [tl ;,ﬂ }

# of jobs with deadline # of jobs with arrival

no more than t» time less than t;

m The feasibility is guaranteed if and only if in any interval [t1, to], the
processor demand is no more than the available time, i.e.,

. . tr+ T; — D; — t
b—t>> giltt)>> G- { 2 - 1J
i=1 i=1 :

m Replacing t» — t1 by L, we conclude the proof.
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Complexity of the Exact Analysis OGN

COMPUTER SCIENCE

For analyzing whether a task set can be schedulable by EDF, the time
complexity is O(nLmax), where Liax is the hyper-period
LCM( Ty, To, ..., Tp).

m |t takes pseudo-polynomial time.

Theorem )

Eisenbrand and Rothvoss [SODA 2010]: testing EDF schedulability of such
a task set is (weakly) coN P-hard. That is, deciding whether a task set is

not schedulable by EDF is (weakly) A/ P-hard.
- 4
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Comparison between RM and EDF (Implicit Deadlin@ﬁv &

COMPUTER SCIENCE

<V EDF

m Low run-time overhead:O(1)

: .. C High ~ti head: O(|
with priority sorting in advance m High run-time overhead: O(log n)

with balanced binary tree
m Optimal for static priority

m Schedulability test is N P-hard
(even if the relative deadline =
period)

m Utilization bound: 0.693

m In general, more preemptions

m Optimal for dynamic priority

m Schedulability test is easy (when
the relative deadline = period)

= Utilization bound: 1

m In general, fewer preemptions
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