

Task Models and Scheduling

Jan Reineke

Saarland University

June 27th, 2013

With thanks to Jian-Jia Chen at KIT!

Timing parameters of a job J_j

- Arrival time (a_j) or release time (r_j) is the time at which the job becomes ready for execution
- Computation (execution) time (C_j) is the time necessary to the processor for executing the job without interruption (= WCET).
- Absolute deadline (d_j) is the time at which the job should be completed.
- Relative deadline (D_j) is the time length between the arrival time and the absolute deadline.
- Start time (s_j) is the time at which the job starts its execution.
- Finishing time (f_j) is the time at which the job finishes its execution.
- Response time (R_j) is the time length at which the job finishes its execution after its arrival, which is $f_j a_j$.

- The execution entities (tasks, processes, threads, etc.) are competing with each other for shared resources
- Scheduling policy is needed
 - When to schedule an entity?
 - Which entity to schedule?

- Scheduling Algorithm: determines the order that jobs execute on the processor
- Jobs (a simplified version) may be in one of three states:

Schedules for a set of jobs $\{J_1, J_2, \ldots, J_N\}$

- A schedule is an assignment of jobs to the processor, such that each job is executed until completion.
- A schedule can be defined as an integer step function $\sigma : \mathbb{R} \to \mathbb{N}$, where $\sigma(t) = j$ denotes job J_j is executed at time t, and $\sigma(t) = 0$ denotes the system is idle at time t.
- If σ(t) changes its value at some time t, then the processor performs a context switch at time t.
- Non-preemptive scheduling: there is only one interval with $\sigma(t) = j$ for every J_j .
- Preemptive scheduling: there can be more than one interval with $\sigma(t) = j$.

Scheduling Concept: Non-preemptive

Scheduling Concept: Non-preemptive

Scheduling Concept: Non-preemptive

Scheduling Concept: Preemptive

Scheduling Concept: Preemptive

Scheduling Concept: Preemptive

Feasibility of Schedules and Schedulability

- A schedule is feasible if all jobs can be completed according to a set of specified constraints.
- A set of jobs is schedulable if there exists a feasible schedule for the set of jobs.
- A scheduling algorithm is optimal if it always produces a feasible schedule if the given set of jobs is schedulable.

Scheduling Algorithms

- Preemptive vs. Non-preemptive
- Optimal vs. Non-optimal

Scheduling Algorithms

- Preemptive vs. Non-preemptive
- Optimal vs. Non-optimal

Evaluating a Schedule

For a job J_j :

• Lateness L_i : delay of job completion with respect to its deadline.

$$L_j = f_j - d_j$$

• Tardiness E_i : the time that a job stays active after its deadline.

$$E_j = \max\{0, L_j\}$$

Laxity (or Slack Time)(X_j): The maximum time that a job can be delayed and still meet its deadline.

$$X_j = d_j - a_j - C_j$$

Metrics of Scheduling Algorithms (for Jobs)

Given a set $\mathbb J$ of n jobs, common metrics to minimize are

• Average response time:

$$\sum_{J_j \in \mathbb{J}} \frac{f_j - a_j}{|\mathbb{J}|}$$

Makespan (total completion time):

 $\max_{J_j \in \mathbb{J}} f_j - \min_{J_j \in \mathbb{J}} a_j$

Total weighted response time:

$$\sum_{J_j \in \mathbb{J}} w_j (f_j - a_j)$$

Maximum latency:

$$L_{\max} = \max_{J_j \in \mathbb{J}} (f_j - d_j)$$

Number of late jobs:

$$N_{\textit{late}} = \sum_{J_j \in \mathbb{J}} \textit{miss}(J_j),$$

where $miss(J_j) = 0$ if $f_j \le d_j$, and $miss(J_j) = 1$ otherwise.

12 / 36

Hard/Soft Real-Time Systems

Hard Real-Time Systems

- ▶ If any hard deadline is ever missed, then the system is incorrect
- The tardiness for any job must be 0
- **Examples**: Nuclear power plant control, flight control
- Soft Real-Time Systems
 - Deadline misses are undesired but do not have catastrophic consequences
 - Possible goals:
 - minimize the number of tardy jobs, minimize the maximum lateness, etc.
 - Examples: Telephone switches, multimedia applications

• At any moment, the system executes the job with the *shortest* remaining time among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
Cj	5	2	6	3	4
dj	6	8	20	14	22

ercise

• At any moment, the system executes the job with the *shortest* remaining time among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
Cj	5	2	6	3	4
dj	6	8	20	14	22

ercise

• At any moment, the system executes the job with the *shortest* remaining time among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
Cj	5	2	6	3	4
dj	6	8	20	14	22

ercise

• At any moment, the system executes the job with the *shortest* remaining time among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
Cj	5	2	6	3	4
dj	6	8	20	14	22

ercise

• At any moment, the system executes the job with the *shortest* remaining time among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
Cj	5	2	6	3	4
dj	6	8	20	14	22

ercise

• At any moment, the system executes the job with the *shortest* remaining time among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
Cj	5	2	6	3	4
dj	6	8	20	14	22

ercise

• At any moment, the system executes the job with the *shortest* remaining time among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
Cj	5	2	6	3	4
dj	6	8	20	14	22

xercise

• At any moment, the system executes the job with the *shortest* remaining time among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
Cj	5	2	6	3	4
dj	6	8	20	14	22

ercise

• At any moment, the system executes the job with the *shortest* remaining time among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
Cj	5	2	6	3	4
dj	6	8	20	14	22

Exercise

• At any moment, the system executes the job with the *earliest absolute deadline* among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
Cj	5	2	6	3	4
dj	6	8	20	14	22

ercise

• At any moment, the system executes the job with the *earliest absolute deadline* among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
Cj	5	2	6	3	4
dj	6	8	20	14	22

ercise

• At any moment, the system executes the job with the *earliest absolute deadline* among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
Cj	5	2	6	3	4
dj	6	8	20	14	22

ercise

• At any moment, the system executes the job with the *earliest absolute deadline* among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
Cj	5	2	6	3	4
dj	6	8	20	14	22

ercise

• At any moment, the system executes the job with the *earliest absolute deadline* among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
Cj	5	2	6	3	4
dj	6	8	20	14	22

ercise

• At any moment, the system executes the job with the *earliest absolute deadline* among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
Cj	5	2	6	3	4
dj	6	8	20	14	22

xercise

• At any moment, the system executes the job with the *earliest absolute deadline* among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
Cj	5	2	6	3	4
dj	6	8	20	14	22

xercise

• At any moment, the system executes the job with the *earliest absolute deadline* among the jobs in the ready queue.

	J_1	J_2	J_3	J_4	J_5
aj	0	2	8	10	15
Cj	5	2	6	3	4
d_j	6	8	20	14	22

Exercise

Recurrent Task Models

- When jobs (usually with the same computation requirement) are released recurrently, these jobs can be modeled by a recurrent task
- Periodic Task τ_i :
 - A job is released exactly and periodically by a period T_i
 - A phase ϕ_i indicates when the first job is released
 - A relative deadline D_i for each job from task τ_i
 - (φ_i, C_i, T_i, D_i) is the specification of periodic task τ_i, where C_i is the worst-case execution time.

■ Sporadic Task τ_i :

- ▶ *T_i* is the minimal time between any two consecutive job releases
- A relative deadline D_i for each job from task τ_i
- (C_i, T_i, D_i) is the specification of sporadic task τ_i, where C_i is the worst-case execution time.

Aperiodic Task: Identical jobs released arbitrarily.

Recurrent Task Models

- When jobs (usually with the same computation requirement) are released recurrently, these jobs can be modeled by a recurrent task
- Periodic Task τ_i :
 - A job is released exactly and periodically by a period T_i
 - A phase ϕ_i indicates when the first job is released
 - A relative deadline D_i for each job from task τ_i
 - (φ_i, C_i, T_i, D_i) is the specification of periodic task τ_i, where C_i is the worst-case execution time.

Sporadic Task τ_i:

- ► *T_i* is the minimal time between any two consecutive job releases
- A relative deadline D_i for each job from task τ_i
- ► (C_i, T_i, D_i) is the specification of sporadic task τ_i, where C_i is the worst-case execution time.

Aperiodic Task: Identical jobs released arbitrarily.

Recurrent Task Models

- When jobs (usually with the same computation requirement) are released recurrently, these jobs can be modeled by a recurrent task
- Periodic Task τ_i :
 - A job is released exactly and periodically by a period T_i
 - A phase ϕ_i indicates when the first job is released
 - A relative deadline D_i for each job from task τ_i
 - (φ_i, C_i, T_i, D_i) is the specification of periodic task τ_i, where C_i is the worst-case execution time.

Sporadic Task τ_i:

- ► *T_i* is the minimal time between any two consecutive job releases
- A relative deadline D_i for each job from task τ_i
- ► (C_i, T_i, D_i) is the specification of sporadic task τ_i, where C_i is the worst-case execution time.
- Aperiodic Task: Identical jobs released arbitrarily.

Examples of Recurrent Task Models

Periodic task:
$$(\phi_i, C_i, T_i, D_i) = (2, 2, 6, 6)$$

Sporadic task: $(C_i, T_i, D_i) = (2, 6, 6)$

Example: Sporadic Control System

Pseudo-code for this system

while (true)

- start := get the system tick;
- perform analog-to-digital conversion to get y;
- compute control output u;
- output *u* and do digital-to-analog conversion;
- end := get the system tick;
- timeToSleep := T (end start);
- sleep timeToSleep;

end while

Example: Periodic Control System

Pseudo-code for this system

set timer to interrupt periodically with period T;

at each timer interrupt **do**

- perform analog-to-digital conversion to get y;
- compute control output *u*;
- output *u* and do digital-to-analog conversion;

od

Evaluating a Schedule for Tasks

For a job J_j :

• Lateness L_j : delay of job completion with respect to its deadline.

$$L_j = f_j - d_j$$

• Tardiness E_j : the time that a job stays active after its deadline.

$$E_j = \max\{0, L_j\}$$

Laxity (or Slack Time)(X_j): The maximum time that a job can be delayed and still meet its deadline.

$$X_j = d_j - a_j - C_j$$

For a task τ_i :

- Lateness L_i : maximum latency of jobs released by task τ_i
- Tardiness E_i : maximum tardiness of jobs released by task τ_i

• Laxity
$$X_i$$
: $D_i - C_i$;

For a task set, we say that the task set is with

- implicit deadline when the relative deadline D_i is equal to the period T_i , i.e., $D_i = T_i$, for every task τ_i ,
- constrained deadline when the relative deadline D_i is no more than the period T_i , i.e., $D_i \leq T_i$, for every task τ_i , or
- arbitrary deadline when the relative deadline D_i could be larger than the period T_i for some task τ_i .

Some Definitions for Periodic Tasks

- The jobs of task τ_i are denoted $J_{i,1}, J_{i,2}, \ldots$
- Synchronous system: Each task has a phase of 0.
- Asynchronous system: Phases are arbitrary.
- Hyperperiod: Least common multiple (LCM) of *T_i*.
- Task utilization of task τ_i : $u_i = \frac{C_i}{T_i}$.
- System utilization: $\sum_{\tau_i} u_i$.

Feasibility and Schedulability for Recurrent Tasks

- A schedule is feasible if all the jobs of all tasks can be completed according to a set of specified constraints.
- A set of tasks is schedulable if there exists a feasible schedule for the set of tasks.
- A scheduling algorithm is optimal if it always produces a feasible schedule if the set of tasks is schedulable.

Graham's Scheduling Algorithm Classification

• Classification: a|b|c

- a: machine environment
 (e.g., uniprocessor, multiprocessor, distributed, ...)
- b: task and resource characteristics
 (e.g., preemptive, independent, synchronous, ...)
- c: performance metric and objectives (e.g., L_{max}, sum of finish times, ...)
- Examples:
 - ▶ 1|non-prem|L_{max}
 - ► M||E_{max}

Earliest Due Date Algorithm

Theorem

 $1|\text{sync}|L_{\text{max}}$: Given a set of *n* independent aperiodic jobs that arrive synchronously (release time is 0), any algorithm that executes tasks in order of non-decreasing deadlines is optimal with respect to minimizing the maximum lateness.

Denoted as Earliest Due Date (EDD) Algorithm [Jackson, 1955]

Proof

Let σ be the schedule for J produced by scheduling algorithm A. We can transform A to EDD schedule A' without increasing L_{max} . Details are in the textbook by Buttazzo [Theorem 3.1].

Optimality of EDF

Theorem

Given a set of n independent aperiodic jobs with arbitrary arrival times, if the aperiodic task set is schedulable on a single processor then any algorithm that executes jobs with earliest deadline (among the set of active jobs) is guaranteed to meet all jobs' deadlines.

- What is the difference between EDD and EDF?
- Several proofs of optimality exist: Liu and Layland (1973), Horn (1974), and Dertouzos (1974).
- Similar to Jackson Algorithm proof of optimality, but need to account for preemption.

A good scheduling algorithm should be monotonic

- If a scheduling algorithm derives a feasible schedule, it should also guarantee the feasibility with
 - less execution time of a task/job,
 - less number of tasks/jobs, or
 - more number of processors/machines.

Just as a processor should not exhibit *timing anomalies*.

Multiprocessor (Graham 1976)

Changing the priority order, increasing the number of processors, reducing execution times, or weakening precedence constraints can result in a deadline miss.

Many Cases

Scheduling problems in multiprocessor systems are usually \mathcal{NP} -Hard.

Fundamentals: Computational Complexity

- $\mathcal{N}P$ -completeness of a problem Π :
 - If Π can be solved in polynomial time by a non-deterministic Turing machine, the problem is in the computational complexity class NP.
 - Π is *NP*-hard if any problem in the *NP* class can be reduced to Π in polynomial time.
 - Π is $\mathcal{N}P$ -complete if Π is in $\mathcal{N}P$ and it is $\mathcal{N}P$ -hard.
- \blacksquare The computational complexity class $\mathcal P$
 - The computing machines we have developed so far are deterministic Turing machines.
 - If Π can be solved in polynomial time by using a deterministic Turing machine, the problem is in the computational complexity class P.
 - ▶ If a problem is *NP*-hard, there is no efficient (polynomial-time) algorithm to derive optimal/feasible solutions unless *P* = *NP*.
 - * The question about $\mathcal{P} = \mathcal{N}P$ or $\mathcal{P} \neq \mathcal{N}P$ is an essential problem in Computer Science.

Fundamentals: Computational Complexity

- $\mathcal{N}P$ -completeness of a problem Π :
 - If Π can be solved in polynomial time by a non-deterministic Turing machine, the problem is in the computational complexity class NP.
 - Π is *NP*-hard if any problem in the *NP* class can be reduced to Π in polynomial time.
 - Π is $\mathcal{N}P$ -complete if Π is in $\mathcal{N}P$ and it is $\mathcal{N}P$ -hard.
- \blacksquare The computational complexity class $\mathcal P$
 - The computing machines we have developed so far are deterministic Turing machines.
 - If Π can be solved in polynomial time by using a deterministic Turing machine, the problem is in the computational complexity class P.
 - If a problem is *NP*-hard, there is no efficient (polynomial-time) algorithm to derive optimal/feasible solutions unless *P* = *NP*.
 - ★ The question about P = NP or $P \neq NP$ is an essential problem in Computer Science.

Summary

- SAARLAND UNIVERSITY
- How to characterize jobs: arrival time a_j , computation time C_j , absolute/relative deadline d_j/D_j
- How to characterize schedules:
 start time s_j, finishing time f_j, response time R_j
- Performance metrics for schedules: lateness L_j, tardiness E_j, laxity X_j
- Properties of schedules, sets of jobs, and scheduling algorithms:
 - feasibility of schedules
 - schedulability of sets of jobs and tasks
 - optimality of scheduling algorithms
- Recurrent task models:

periodic, sporadic, aperiodic, synchronous vs asynchronous

- Scheduling algorithms:
 - Shortest-Job-First (SJF)
 - Earliest-Due-Date (EDD)
 - Earliest-Deadline-First (EDF)

Appendix

Some Examples for Multiprocessor Scheduling

Why is Real-Time Scheduling Hard? Multiprocessor

- Partitioned scheduling (Each task/job is on a processor)
 - As most partitioning algorithms are not optimal, a system might become infeasible with
 - ★ Less execution time of a task/job
 - ★ Less number of tasks/jobs
 - * More number of processors/machines
- Global scheduling
 - As most priority-assignment algorithms are not optimal, a system might become infeasible with
 - ★ Less execution time of a task/job
 - ★ Less number of tasks/jobs
 - ★ More number of processors/machines

Precedence Constraints

Jobs (and tasks) may have to execute in a pre-specified order.

On 3 processors

Removing the precedence constraints on $J_4...$

Removing the precedence constraints on $J_4...$

Reduce the execution time by 1, and schedule on 3 processors

On 4 processors

On 4 processors

J_1			J9				
J ₂	J ₄	J_5		J ₇			
J ₃		J ₆		J_8			
0 2 Use 4 prod	4 cessor	і б s	। 8	10	ו 12	ו 14	16
J ₁ J ₂	J _i J ₆	7					
J ₃ J	5						
J ₄	J ₈			J9			、