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saarland
universityTiming parameters of a job Jj

Arrival time (aj) or release time (rj) is the time at which the job becomes
ready for execution
Computation (execution) time (Cj) is the time necessary to the processor for
executing the job without interruption (= WCET).
Absolute deadline (dj) is the time at which the job should be completed.
Relative deadline (Dj) is the time length between the arrival time and the
absolute deadline.
Start time (sj) is the time at which the job starts its execution.
Finishing time (fj) is the time at which the job finishes its execution.
Response time (Rj) is the time length at which the job finishes its execution
after its arrival, which is fj − aj .

time

Cj

sj fj djaj
Rj

Dj
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universityMulti-Tasking (Recap)

The execution entities (tasks, processes, threads, etc.) are competing
with each other for shared resources
Scheduling policy is needed

I When to schedule an entity?
I Which entity to schedule?
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universityScheduling Concepts

Scheduling Algorithm: determines the order that jobs execute on
the processor
Jobs (a simplified version) may be in one of three states:

ready executing terminated
activate

schedule

preempt

completion
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universitySchedules for a set of jobs {J1, J2, . . . , JN}

A schedule is an assignment of jobs to the processor, such that each
job is executed until completion.
A schedule can be defined as an integer step function σ : R→ N,
where σ(t) = j denotes job Jj is executed at time t, and σ(t) = 0
denotes the system is idle at time t.
If σ(t) changes its value at some time t, then the processor performs
a context switch at time t.
Non-preemptive scheduling: there is only one interval with σ(t) = j
for every Jj .
Preemptive scheduling: there can be more than one interval with
σ(t) = j .
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universityScheduling Concept: Non-preemptive

Schedule: σ : R→ N function of processor time to jobs

J1 J2 J3

0 1 2 3 4 5 6 7 8 9 10

σ(t)

1

2

3

s1 s2 = f1 f2 s3 f3

Context
Switches
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universityFeasibility of Schedules and Schedulability

A schedule is feasible if all jobs can be completed according to a set of
specified constraints.
A set of jobs is schedulable if there exists a feasible schedule for the
set of jobs.
A scheduling algorithm is optimal if it always produces a feasible
schedule if the given set of jobs is schedulable.
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Scheduling Algorithms

Static Scheduling
(offline, or clock-driven)

Dynamic Scheduling
(online, or priority-driven)

Static-Priority Scheduling Dynamic-Priority Scheduling

Preemptive vs. Non-preemptive
Optimal vs. Non-optimal
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universityEvaluating a Schedule

For a job Jj :
Lateness Lj : delay of job completion with respect to its deadline.

Lj = fj − dj

Tardiness Ej : the time that a job stays active after its deadline.

Ej = max{0, Lj}

Laxity (or Slack Time)(Xj): The maximum time that a job can be delayed
and still meet its deadline.

Xj = dj − aj − Cj
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Given a set J of n jobs, common metrics to minimize are

Average response time:∑
Jj∈J

fj − aj

|J|

Makespan (total completion
time):

max
Jj∈J

fj −min
Jj∈J

aj

Total weighted response time:∑
Jj∈J

wj(fj − aj)

Maximum latency:

Lmax = max
Jj∈J

(fj − dj)

Number of late jobs:

Nlate =
∑
Jj∈J

miss(Jj),

where miss(Jj) = 0 if
fj ≤ dj , and miss(Jj) = 1
otherwise.
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Hard Real-Time Systems
I If any hard deadline is ever missed, then the system is incorrect
I The tardiness for any job must be 0
I Examples: Nuclear power plant control, flight control

Soft Real-Time Systems
I Deadline misses are undesired but do not have catastrophic

consequences
I Possible goals:

F minimize the number of tardy jobs, minimize the maximum lateness,
etc.

I Examples: Telephone switches, multimedia applications
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At any moment, the system executes the job with the shortest
remaining time among the jobs in the ready queue.

J1 J2 J3 J4 J5

aj 0 2 8 10 15
Cj 5 2 6 3 4
dj 6 8 20 14 22

Exercise
What is the average
response time of the
above schedule?
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When jobs (usually with the same computation requirement) are
released recurrently, these jobs can be modeled by a recurrent task
Periodic Task τi :

I A job is released exactly and periodically by a period Ti
I A phase φi indicates when the first job is released
I A relative deadline Di for each job from task τi
I (φi ,Ci ,Ti ,Di ) is the specification of periodic task τi , where Ci is the

worst-case execution time.
Sporadic Task τi :

I Ti is the minimal time between any two consecutive job releases
I A relative deadline Di for each job from task τi
I (Ci ,Ti ,Di ) is the specification of sporadic task τi , where Ci is the

worst-case execution time.

Aperiodic Task: Identical jobs released arbitrarily.
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Periodic task: (φi ,Ci ,Ti ,Di ) = (2, 2, 6, 6)

release deadline

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

J1 J1 J1 J1 J1

Sporadic task: (Ci ,Ti ,Di ) = (2, 6, 6)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

J1 J1 J1 J1
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Pseudo-code for this system
while (true)

start := get the system tick;

perform analog-to-digital
conversion to get y ;

compute control output u;

output u and do digital-to-analog
conversion;

end := get the system tick;

timeToSleep := T − (end − start);

sleep timeToSleep;

end while

Control System

A/D

(The system

being controlled)

plant

actuator

D/A
Control−law

computation

sensor

y(t) u(t)

ukyk
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Pseudo-code for this system
set timer to interrupt periodically with
period T ;

at each timer interrupt
do

perform analog-to-digital
conversion to get y ;

compute control output u;

output u and do digital-to-analog
conversion;

od

Control System

A/D

(The system

being controlled)

plant

actuator

D/A
Control−law

computation

sensor

y(t) u(t)

ukyk
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For a job Jj :
Lateness Lj : delay of job completion with respect to its deadline.

Lj = fj − dj

Tardiness Ej : the time that a job stays active after its deadline.

Ej = max{0, Lj}

Laxity (or Slack Time)(Xj): The maximum time that a job can be delayed
and still meet its deadline.

Xj = dj − aj − Cj

For a task τi :
Lateness Li : maximum latency of jobs released by task τi
Tardiness Ei : maximum tardiness of jobs released by task τi
Laxity Xi : Di − Ci ;
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For a task set, we say that the task set is with
implicit deadline when the relative deadline Di is equal to the period
Ti , i.e., Di = Ti , for every task τi ,
constrained deadline when the relative deadline Di is no more than the
period Ti , i.e., Di ≤ Ti , for every task τi , or
arbitrary deadline when the relative deadline Di could be larger than
the period Ti for some task τi .
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The jobs of task τi are denoted Ji ,1, Ji ,2, . . . . . ..
Synchronous system: Each task has a phase of 0.
Asynchronous system: Phases are arbitrary.
Hyperperiod: Least common multiple (LCM) of Ti .
Task utilization of task τi : ui = Ci

Ti
.

System utilization:
∑

τi
ui .
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A schedule is feasible if all the jobs of all tasks can be completed
according to a set of specified constraints.
A set of tasks is schedulable if there exists a feasible schedule for the
set of tasks.
A scheduling algorithm is optimal if it always produces a feasible
schedule if the set of tasks is schedulable.
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Classification: a|b|c
I a: machine environment

(e.g., uniprocessor, multiprocessor, distributed, . . .)
I b: task and resource characteristics

(e.g., preemptive, independent, synchronous, . . .)
I c : performance metric and objectives

(e.g., Lmax, sum of finish times, . . .)
Examples:

I 1|non-prem|Lmax
I M||Emax
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Theorem
1|sync|Lmax: Given a set of n independent aperiodic jobs that arrive syn-
chronously (release time is 0), any algorithm that executes tasks in order of
non-decreasing deadlines is optimal with respect to minimizing the maximum
lateness.
Denoted as Earliest Due Date (EDD) Algorithm [Jackson, 1955]

Proof
Let σ be the schedule for J produced by scheduling algorithm A. We can
transform A to EDD schedule A′ without increasing Lmax. Details are in the
textbook by Buttazzo [Theorem 3.1].
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Theorem
Given a set of n independent aperiodic jobs with arbitrary arrival times, if
the aperiodic task set is schedulable on a single processor then any algorithm
that executes jobs with earliest deadline (among the set of active jobs) is
guaranteed to meet all jobs’ deadlines.

What is the difference between EDD and EDF?
Several proofs of optimality exist: Liu and Layland (1973), Horn
(1974), and Dertouzos (1974).
Similar to Jackson Algorithm proof of optimality, but need to account
for preemption.
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A good scheduling algorithm should be monotonic

If a scheduling algorithm derives a feasible schedule, it should also
guarantee the feasibility with

I less execution time of a task/job,
I less number of tasks/jobs, or
I more number of processors/machines.

Just as a processor should not exhibit timing anomalies.
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Multiprocessor (Graham 1976)

Changing the priority order, increasing the number of processors, reducing
execution times, or weakening precedence constraints can result in a
deadline miss.

Many Cases

Scheduling problems in multiprocessor systems are usually NP-Hard.
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NP-completeness of a problem Π:
I If Π can be solved in polynomial time by a non-deterministic Turing

machine, the problem is in the computational complexity class NP.
I Π is NP-hard if any problem in the NP class can be reduced to Π in

polynomial time.
I Π is NP-complete if Π is in NP and it is NP-hard.

The computational complexity class P
I The computing machines we have developed so far are deterministic

Turing machines.
I If Π can be solved in polynomial time by using a deterministic Turing

machine, the problem is in the computational complexity class P.
I If a problem is NP-hard, there is no efficient (polynomial-time)

algorithm to derive optimal/feasible solutions unless P = NP.
F The question about P = NP or P 6= NP is an essential problem in

Computer Science.
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How to characterize jobs:
arrival time aj , computation time Cj , absolute/relative deadline dj/Dj

How to characterize schedules:
start time sj , finishing time fj , response time Rj

Performance metrics for schedules:
lateness Lj , tardiness Ej , laxity Xj

Properties of schedules, sets of jobs, and scheduling algorithms:
I feasibility of schedules
I schedulability of sets of jobs and tasks
I optimality of scheduling algorithms

Recurrent task models:
periodic, sporadic, aperiodic, synchronous vs asynchronous
Scheduling algorithms:

I Shortest-Job-First (SJF)
I Earliest-Due-Date (EDD)
I Earliest-Deadline-First (EDF)
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Appendix

Some Examples for Multiprocessor Scheduling
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Anomalies

Partitioned scheduling (Each task/job is on a processor)
I As most partitioning algorithms are not optimal, a system might

become infeasible with
F Less execution time of a task/job
F Less number of tasks/jobs
F More number of processors/machines

Global scheduling
I As most priority-assignment algorithms are not optimal, a system

might become infeasible with
F Less execution time of a task/job
F Less number of tasks/jobs
F More number of processors/machines
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Jobs (and tasks) may have to execute in a pre-specified order.

J1

J2

J3

J4

J5

J6

J7

J8

J9
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J1(3)

J2(2)

J3(2)

J4(2)

J5(4)

J6(4)

J7(4)

J8(4)

J9(9)

On 3 processors

0 2 4 6 8 10 12 14 16

J3 J6 J8

J2 J4 J5 J7

J1 J9

Removing the precedence constraints on J4...

0 2 4 6 8 10 12 14 16

J3 J5 J8

J2 J4 J7

J1 J6 J9
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J1(2)

J2(1)

J3(1)

J4(1)

J5(3)

J6(3)

J7(3)

J8(3)

J9(8)

Reduce the execution
time by 1, and schedule

on 3 processors

0 2 4 6 8 10 12 14 16

J3 J6 J8

J2 J4 J7

J1 J5 J9
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J1(3)

J2(2)

J3(2)

J4(2)

J5(4)

J6(4)

J7(4)

J8(4)

J9(9)

On 4 processors

0 2 4 6 8 10 12 14 16

J3 J6 J8

J2 J4 J5 J7

J1 J9

Use 4 processors

J3 J5

J2 J6

J1 J7

J4 J8 J9
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J1(3)

J2(2)

J3(2)

J4(2)

J5(4)

J6(4)
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