Task Models and Scheduling

Jan Reineke

Saarland University

June 27th, 2013

With thanks to Jian-Jia Chen at KIT!
Scheduling Theory in Real-Time Systems

Uniprocessor Systems
- Task Models and Scheduling
- Schedulability Analysis
- Resource Sharing and Servers

Multi-processor Systems
- Partitioned Scheduling
- Semi-Partitioned Scheduling
- Global Scheduling
- Resource Sharing
Timing parameters of a job J_j

- Arrival time (a_j) or release time (r_j) is the time at which the job becomes ready for execution.
- Computation (execution) time (C_j) is the time necessary to the processor for executing the job without interruption (= WCET).
- Absolute deadline (d_j) is the time at which the job should be completed.
- Relative deadline (D_j) is the time length between the arrival time and the absolute deadline.
- Start time (s_j) is the time at which the job starts its execution.
- Finishing time (f_j) is the time at which the job finishes its execution.
- Response time (R_j) is the time length at which the job finishes its execution after its arrival, which is $f_j - a_j$.

![Diagram of timing parameters](image)
Multi-Tasking (Recap)

- The execution entities (tasks, processes, threads, etc.) are competing with each other for shared resources
- Scheduling policy is needed
 - When to schedule an entity?
 - Which entity to schedule?
Scheduling Concepts

- **Scheduling Algorithm**: determines the order that jobs execute on the processor
- Jobs (a simplified version) may be in one of three states:
Schedules for a set of jobs \(\{ J_1, J_2, \ldots, J_N \} \)

- A schedule is an assignment of jobs to the processor, such that each job is executed until completion.
- A schedule can be defined as an integer step function \(\sigma : \mathbb{R} \rightarrow \mathbb{N} \), where \(\sigma(t) = j \) denotes job \(J_j \) is executed at time \(t \), and \(\sigma(t) = 0 \) denotes the system is idle at time \(t \).
- If \(\sigma(t) \) changes its value at some time \(t \), then the processor performs a context switch at time \(t \).
- Non-preemptive scheduling: there is only one interval with \(\sigma(t) = j \) for every \(J_j \).
- Preemptive scheduling: there can be more than one interval with \(\sigma(t) = j \).
Scheduling Concept: Non-preemptive

Schedule: $\sigma : \mathbb{R} \rightarrow \mathbb{N}$ function of processor time to jobs

$$
\sigma(t) = \begin{cases}
1 & t < 3 \\
2 & 3 \leq t < 6 \\
3 & 6 \leq t < 9 \\
4 & 9 \leq t
\end{cases}
$$
Scheduling Concept: Non-preemptive

Schedule: \(\sigma : \mathbb{R} \rightarrow \mathbb{N} \) function of processor time to jobs

Context Switches

\[\sigma(t) \]

\[s_1 \quad s_2 = f_1 \quad f_2 \quad s_3 \quad f_3 \]
Scheduling Concept: Non-preemptive

Schedule: \(\sigma : \mathbb{R} \rightarrow \mathbb{N} \) function of processor time to jobs

\[
\sigma(t) = \begin{cases}
1 & s_1 \\
2 & s_2 = f_1 \\
3 & f_2 \\
4 & s_3 \\
5 & f_3
\end{cases}
\]
Scheduling Concept: Preemptive

Schedule: \(\sigma : \mathbb{R} \rightarrow \mathbb{N} \) function of processor time to jobs

\[\sigma(t) \]

\(J_1 \) \hspace{1cm} \(J_2 \) \hspace{1cm} \(J_1 \) \hspace{1cm} \(J_3 \)
Scheduling Concept: Preemptive

Schedule: $\sigma : \mathbb{R} \rightarrow \mathbb{N}$ function of processor time to jobs

The diagram illustrates the scheduling concept with three jobs J_1, J_2, and J_3 and the scheduling function $\sigma(t)$.
Scheduling Concept: Preemptive

Schedule: $\sigma : \mathbb{R} \rightarrow \mathbb{N}$ function of processor time to jobs

$\sigma(t)$

$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10$

$s_1 \quad s_2 \quad f_2 \quad f_1 \quad s_3 \quad f_3$

$J_1 \quad J_2 \quad J_1 \quad J_3$

Context Switches
Feasibility of Schedules and Schedulability

- A schedule is **feasible** if all jobs can be completed according to a set of specified constraints.
- A set of jobs is **schedulable** if there exists a feasible schedule for the set of jobs.
- A scheduling algorithm is **optimal** if it always produces a feasible schedule if the given set of jobs is schedulable.
Scheduling Algorithms

- Static Scheduling
 (offline, or clock-driven)
 - Static-Priority Scheduling

- Dynamic Scheduling
 (online, or priority-driven)
 - Dynamic-Priority Scheduling

- Preemptive vs. Non-preemptive
- Optimal vs. Non-optimal
Scheduling Algorithms

- Static Scheduling (offline, or clock-driven)
- Dynamic Scheduling (online, or priority-driven)
 - Static-Priority Scheduling
 - Dynamic-Priority Scheduling

- Preemptive vs. Non-preemptive
- Optimal vs. Non-optimal
Evaluating a Schedule

For a job J_j:

- Lateness L_j: delay of job completion with respect to its deadline.
 \[L_j = f_j - d_j \]

- Tardiness E_j: the time that a job stays active after its deadline.
 \[E_j = \max\{0, L_j\} \]

- Laxity (or Slack Time)(X_j): The maximum time that a job can be delayed and still meet its deadline.
 \[X_j = d_j - a_j - C_j \]
Metrics of Scheduling Algorithms (for Jobs)

Given a set \mathcal{J} of n jobs, common metrics to minimize are

- **Average response time:**
 \[
 \sum_{J_j \in \mathcal{J}} \frac{f_j - a_j}{|\mathcal{J}|}
 \]

- **Makespan (total completion time):**
 \[
 \max_{J_j \in \mathcal{J}} f_j - \min_{J_j \in \mathcal{J}} a_j
 \]

- **Total weighted response time:**
 \[
 \sum_{J_j \in \mathcal{J}} w_j (f_j - a_j)
 \]

- **Maximum latency:**
 \[
 L_{\text{max}} = \max_{J_j \in \mathcal{J}} (f_j - d_j)
 \]

- **Number of late jobs:**
 \[
 N_{\text{late}} = \sum_{J_j \in \mathcal{J}} \text{miss}(J_j),
 \]

 where $\text{miss}(J_j) = 0$ if $f_j \leq d_j$, and $\text{miss}(J_j) = 1$ otherwise.
Hard/Soft Real-Time Systems

- **Hard Real-Time Systems**
 - If any hard deadline is ever missed, then the system is incorrect
 - The tardiness for any job must be 0
 - **Examples**: Nuclear power plant control, flight control

- **Soft Real-Time Systems**
 - Deadline misses are undesired but do not have catastrophic consequences
 - Possible goals:
 - minimize the number of tardy jobs, minimize the maximum lateness, etc.
 - **Examples**: Telephone switches, multimedia applications
An Example: Shortest-Job-First (SJF)

At any moment, the system executes the job with the shortest remaining time among the jobs in the ready queue.

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_j</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>C_j</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>d_j</td>
<td>6</td>
<td>8</td>
<td>20</td>
<td>14</td>
<td>22</td>
</tr>
</tbody>
</table>

Exercise

What is the average response time of the above schedule?
An Example: Shortest-Job-First (SJF)

- At any moment, the system executes the job with the *shortest* remaining time among the jobs in the ready queue.

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_j</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>C_j</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>d_j</td>
<td>6</td>
<td>8</td>
<td>20</td>
<td>14</td>
<td>22</td>
</tr>
</tbody>
</table>

Exercise

What is the average response time of the above schedule?

$$C_1 = 3C_2 = 0 \quad C_1 = 0 \quad C_3 = 4 \quad C_4 = 0C_3 = 2C_3 = 0 \quad C_5 = 0$$
An Example: Shortest-Job-First (SJF)

At any moment, the system executes the job with the \textit{shortest} remaining time among the jobs in the ready queue.

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_j</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>C_j</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>d_j</td>
<td>6</td>
<td>8</td>
<td>20</td>
<td>14</td>
<td>22</td>
</tr>
</tbody>
</table>

Exercise

What is the average response time of the above schedule?
An Example: Shortest-Job-First (SJF)

- At any moment, the system executes the job with the shortest remaining time among the jobs in the ready queue.

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_j</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>C_j</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>d_j</td>
<td>6</td>
<td>8</td>
<td>20</td>
<td>14</td>
<td>22</td>
</tr>
</tbody>
</table>

Exercise

What is the average response time of the above schedule?
An Example: Shortest-Job-First (SJF)

- At any moment, the system executes the job with the *shortest* remaining time among the jobs in the ready queue.

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_j</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>C_j</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>d_j</td>
<td>6</td>
<td>8</td>
<td>20</td>
<td>14</td>
<td>22</td>
</tr>
</tbody>
</table>

Exercise

What is the average response time of the above schedule?
An Example: Shortest-Job-First (SJF)

- At any moment, the system executes the job with the \textit{shortest} remaining time among the jobs in the ready queue.

<table>
<thead>
<tr>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_j</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>C_j</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>d_j</td>
<td>6</td>
<td>8</td>
<td>20</td>
<td>14</td>
</tr>
</tbody>
</table>

Exercise

What is the average response time of the above schedule?
An Example: Shortest-Job-First (SJF)

- At any moment, the system executes the job with the *shortest* remaining time among the jobs in the ready queue.

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_j</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>C_j</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>d_j</td>
<td>6</td>
<td>8</td>
<td>20</td>
<td>14</td>
<td>22</td>
</tr>
</tbody>
</table>

Exercise

What is the average response time of the above schedule?
An Example: Shortest-Job-First (SJF)

- At any moment, the system executes the job with the **shortest** remaining time among the jobs in the ready queue.

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_j</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>C_j</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>d_j</td>
<td>6</td>
<td>8</td>
<td>20</td>
<td>14</td>
<td>22</td>
</tr>
</tbody>
</table>

Exercise

What is the average response time of the above schedule?

\[
C_1 = 3, C_2 = 0, \quad C_1 = 0, \quad C_3 = 4, \quad C_4 = 0, \quad C_3 = 2, \quad C_3 = 0, \quad C_5 = 0
\]
An Example: Shortest-Job-First (SJF)

- At any moment, the system executes the job with the *shortest* remaining time among the jobs in the ready queue.

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_j</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>C_j</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>d_j</td>
<td>6</td>
<td>8</td>
<td>20</td>
<td>14</td>
<td>22</td>
</tr>
</tbody>
</table>

Exercise

What is the average response time of the above schedule?

$C_1 = 3, C_2 = 0, C_1 = 0, C_3 = 4, C_4 = 0, C_3 = 2, C_3 = 0, C_5 = 0$
An Example: Earliest-Deadline-First (EDF)

- At any moment, the system executes the job with the *earliest absolute deadline* among the jobs in the ready queue.

\[
\begin{array}{c|ccccc}
 & J_1 & J_2 & J_3 & J_4 & J_5 \\
\hline
a_j & 0 & 2 & 8 & 10 & 15 \\
C_j & 5 & 2 & 6 & 3 & 4 \\
d_j & 6 & 8 & 20 & 14 & 22 \\
\end{array}
\]

Exercise

What is the average response time of the above schedule?

\[
C_1 = 0 \quad C_2 = 0 \quad C_3 = 4 \quad C_4 = 0 \quad C_5 = 0
\]
An Example: Earliest-Deadline-First (EDF)

- At any moment, the system executes the job with the *earliest absolute deadline* among the jobs in the ready queue.

<table>
<thead>
<tr>
<th></th>
<th>(J_1)</th>
<th>(J_2)</th>
<th>(J_3)</th>
<th>(J_4)</th>
<th>(J_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_j)</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>(C_j)</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>(d_j)</td>
<td>6</td>
<td>8</td>
<td>20</td>
<td>14</td>
<td>22</td>
</tr>
</tbody>
</table>

Exercise

What is the average response time of the above schedule?

\[C_1 = 0, C_2 = 0, C_3 = 4, C_4 = 0, C_5 = 0\]
An Example: Earliest-Deadline-First (EDF)

- At any moment, the system executes the job with the *earliest absolute deadline* among the jobs in the ready queue.

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_j</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>C_j</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>d_j</td>
<td>6</td>
<td>8</td>
<td>20</td>
<td>14</td>
<td>22</td>
</tr>
</tbody>
</table>

Exercise

What is the average response time of the above schedule?
An Example: Earliest-Deadline-First (EDF)

- At any moment, the system executes the job with the *earliest absolute deadline* among the jobs in the ready queue.

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_j</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>C_j</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>d_j</td>
<td>6</td>
<td>8</td>
<td>20</td>
<td>14</td>
<td>22</td>
</tr>
</tbody>
</table>

Exercise

What is the average response time of the above schedule?

$C_1 = 0, C_2 = 0, C_3 = 4, C_4 = 0, C_3 = 0, C_5 = 0$
An Example: Earliest-Deadline-First (EDF)

- At any moment, the system executes the job with the *earliest absolute deadline* among the jobs in the ready queue.

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_j</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>C_j</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>d_j</td>
<td>6</td>
<td>8</td>
<td>20</td>
<td>14</td>
<td>22</td>
</tr>
</tbody>
</table>

Exercise

What is the average response time of the above schedule?
An Example: Earliest-Deadline-First (EDF)

- At any moment, the system executes the job with the *earliest absolute deadline* among the jobs in the ready queue.

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_j</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>C_j</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>d_j</td>
<td>6</td>
<td>8</td>
<td>20</td>
<td>14</td>
<td>22</td>
</tr>
</tbody>
</table>

Exercise

What is the average response time of the above schedule?
An Example: Earliest-Deadline-First (EDF)

- At any moment, the system executes the job with the *earliest absolute deadline* among the jobs in the ready queue.

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_j</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>C_j</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>d_j</td>
<td>6</td>
<td>8</td>
<td>20</td>
<td>14</td>
<td>22</td>
</tr>
</tbody>
</table>

Exercise

What is the average response time of the above schedule?
An Example: Earliest-Deadline-First (EDF)

- At any moment, the system executes the job with the *earliest absolute deadline* among the jobs in the ready queue.

<table>
<thead>
<tr>
<th></th>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>J_4</th>
<th>J_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_j</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>C_j</td>
<td>5</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>d_j</td>
<td>6</td>
<td>8</td>
<td>20</td>
<td>14</td>
<td>22</td>
</tr>
</tbody>
</table>

Exercise

What is the average response time of the above schedule?
Recurrent Task Models

- When jobs (usually with the same computation requirement) are released recurrently, these jobs can be modeled by a recurrent task.

- **Periodic Task** τ_i:
 - A job is released exactly and periodically by a period T_i.
 - A phase ϕ_i indicates when the first job is released.
 - A relative deadline D_i for each job from task τ_i.
 - (ϕ_i, C_i, T_i, D_i) is the specification of periodic task τ_i, where C_i is the worst-case execution time.

- **Sporadic Task** τ_i:
 - T_i is the minimal time between any two consecutive job releases.
 - A relative deadline D_i for each job from task τ_i.
 - (C_i, T_i, D_i) is the specification of sporadic task τ_i, where C_i is the worst-case execution time.

- **Aperiodic Task**: Identical jobs released arbitrarily.
Recurrent Task Models

- When jobs (usually with the same computation requirement) are released recurrently, these jobs can be modeled by a recurrent task.

 Periodic Task τ_i:
 - A job is released exactly and periodically by a period T_i.
 - A phase ϕ_i indicates when the first job is released.
 - A relative deadline D_i for each job from task τ_i.
 - (ϕ_i, C_i, T_i, D_i) is the specification of periodic task τ_i, where C_i is the worst-case execution time.

 Sporadic Task τ_i:
 - T_i is the minimal time between any two consecutive job releases.
 - A relative deadline D_i for each job from task τ_i.
 - (C_i, T_i, D_i) is the specification of sporadic task τ_i, where C_i is the worst-case execution time.

- **Aperiodic Task:** Identical jobs released arbitrarily.
Recurrent Task Models

- When jobs (usually with the same computation requirement) are released recurrently, these jobs can be modeled by a recurrent task.

- **Periodic Task** τ_i:
 - A job is released exactly and periodically by a period T_i
 - A phase ϕ_i indicates when the first job is released
 - A relative deadline D_i for each job from task τ_i
 - (ϕ_i, C_i, T_i, D_i) is the specification of periodic task τ_i, where C_i is the worst-case execution time.

- **Sporadic Task** τ_i:
 - T_i is the minimal time between any two consecutive job releases
 - A relative deadline D_i for each job from task τ_i
 - (C_i, T_i, D_i) is the specification of sporadic task τ_i, where C_i is the worst-case execution time.

- **Aperiodic Task**: Identical jobs released arbitrarily.
Examples of Recurrent Task Models

Periodic task: \((\phi_i, C_i, T_i, D_i) = (2, 2, 6, 6)\)

Sporadic task: \((C_i, T_i, D_i) = (2, 6, 6)\)
Example: Sporadic Control System

Pseudo-code for this system

\begin{itemize}
 \item while (true)
 \item start := get the system tick;
 \item perform analog-to-digital conversion to get \(y \);
 \item compute control output \(u \);
 \item output \(u \) and do digital-to-analog conversion;
 \item end := get the system tick;
 \item \(timeToSleep := T - (end - start) \);
 \item sleep \(timeToSleep \);
\end{itemize}

end while
Example: Periodic Control System

Pseudo-code for this system

set timer to interrupt periodically with period T;

at each timer interrupt do

- perform analog-to-digital conversion to get y;
- compute control output u;
- output u and do digital-to-analog conversion;

od

Control System

A/D y_k Control–law computation u_k D/A

$y(t)$ sensor plant (The system being controlled) actuator $u(t)$
Evaluating a Schedule for Tasks

For a job J_j:

- **Lateness L_j:** delay of job completion with respect to its deadline.
 \[L_j = f_j - d_j \]

- **Tardiness E_j:** the time that a job stays active after its deadline.
 \[E_j = \max\{0, L_j\} \]

- **Laxity (or Slack Time) X_j:** The maximum time that a job can be delayed and still meet its deadline.
 \[X_j = d_j - a_j - C_j \]

For a task τ_i:

- **Lateness L_i:** maximum latency of jobs released by task τ_i
- **Tardiness E_i:** maximum tardiness of jobs released by task τ_i
- **Laxity X_i:** $D_i - C_i$
Relative Deadline vs Period

For a task set, we say that the task set is with

- **implicit deadline** when the relative deadline D_i is equal to the period T_i, i.e., $D_i = T_i$, for every task τ_i,

- **constrained deadline** when the relative deadline D_i is no more than the period T_i, i.e., $D_i \leq T_i$, for every task τ_i, or

- **arbitrary deadline** when the relative deadline D_i could be larger than the period T_i for some task τ_i.
Some Definitions for Periodic Tasks

- The jobs of task τ_i are denoted $J_{i,1}, J_{i,2}, \ldots$.
- Synchronous system: Each task has a phase of 0.
- Asynchronous system: Phases are arbitrary.
- Hyperperiod: Least common multiple (LCM) of T_i.
- Task utilization of task τ_i: $u_i = \frac{C_i}{T_i}$.
- System utilization: $\sum_{\tau_i} u_i$.
A schedule is **feasible** if all the jobs of all tasks can be completed according to a set of specified constraints.

A set of tasks is **schedulable** if there exists a feasible schedule for the set of tasks.

A scheduling algorithm is **optimal** if it always produces a feasible schedule if the set of tasks is schedulable.
Graham’s Scheduling Algorithm Classification

- **Classification**: $a|b|c$
 - a: machine environment
 (e.g., uniprocessor, multiprocessor, distributed, ...)
 - b: task and resource characteristics
 (e.g., preemptive, independent, synchronous, ...)
 - c: performance metric and objectives
 (e.g., L_{max}, sum of finish times, ...)

- **Examples**:
 - $1|\text{non-prem}|L_{\text{max}}$
 - $M||E_{\text{max}}$
Theorem

1|sync|\(L_{\text{max}}\): Given a set of \(n\) independent aperiodic jobs that arrive synchronously (release time is 0), any algorithm that executes tasks in order of non-decreasing deadlines is optimal with respect to minimizing the maximum lateness.

Denoted as Earliest Due Date (EDD) Algorithm [Jackson, 1955]

Proof

Let \(\sigma\) be the schedule for \(J\) produced by scheduling algorithm \(A\). We can transform \(A\) to EDD schedule \(A'\) without increasing \(L_{\text{max}}\). Details are in the textbook by Buttazzo [Theorem 3.1].
Optimality of EDF

Theorem

Given a set of n independent aperiodic jobs with arbitrary arrival times, if the aperiodic task set is schedulable on a single processor then any algorithm that executes jobs with earliest deadline (among the set of active jobs) is guaranteed to meet all jobs’ deadlines.

- What is the difference between EDD and EDF?
- Similar to Jackson Algorithm proof of optimality, but need to account for preemption.
Monotonicity of Scheduling Algorithms

A good scheduling algorithm should be monotonic

- If a scheduling algorithm derives a feasible schedule, it should also guarantee the feasibility with
 - less execution time of a task/job,
 - less number of tasks/jobs, or
 - more number of processors/machines.

Just as a processor should not exhibit *timing anomalies*.
Why is Real-Time Scheduling Hard?

Multiprocessor (Graham 1976)
Changing the priority order, increasing the number of processors, reducing execution times, or weakening precedence constraints can result in a deadline miss.

Many Cases
Scheduling problems in multiprocessor systems are usually \mathcal{NP}-Hard.
Fundamentals: Computational Complexity

- \(NP\)-completeness of a problem \(\Pi\):
 - If \(\Pi\) can be solved in polynomial time by a non-deterministic Turing machine, the problem is in the computational complexity class \(NP\).
 - \(\Pi\) is \(NP\)-hard if any problem in the \(NP\) class can be reduced to \(\Pi\) in polynomial time.
 - \(\Pi\) is \(NP\)-complete if \(\Pi\) is in \(NP\) and it is \(NP\)-hard.

- The computational complexity class \(P\):
 - The computing machines we have developed so far are deterministic Turing machines.
 - If \(\Pi\) can be solved in polynomial time by using a deterministic Turing machine, the problem is in the computational complexity class \(P\).
 - If a problem is \(NP\)-hard, there is no efficient (polynomial-time) algorithm to derive optimal/feasible solutions unless \(P = NP\).

☆ The question about \(P = NP\) or \(P \neq NP\) is an essential problem in Computer Science.
Fundamentals: Computational Complexity

- \mathcal{NP}-completeness of a problem Π:
 - If Π can be solved in polynomial time by a non-deterministic Turing machine, the problem is in the computational complexity class \mathcal{NP}.
 - Π is \mathcal{NP}-hard if any problem in the \mathcal{NP} class can be reduced to Π in polynomial time.
 - Π is \mathcal{NP}-complete if Π is in \mathcal{NP} and it is \mathcal{NP}-hard.

- The computational complexity class \mathcal{P}
 - The computing machines we have developed so far are deterministic Turing machines.
 - If Π can be solved in polynomial time by using a deterministic Turing machine, the problem is in the computational complexity class \mathcal{P}.
 - If a problem is \mathcal{NP}-hard, there is no efficient (polynomial-time) algorithm to derive optimal/feasible solutions unless $\mathcal{P} = \mathcal{NP}$.
 - The question about $\mathcal{P} = \mathcal{NP}$ or $\mathcal{P} \neq \mathcal{NP}$ is an essential problem in Computer Science.
Summary

- How to characterize jobs:
 - arrival time a_j, computation time C_j, absolute/relative deadline d_j/D_j
- How to characterize schedules:
 - start time s_j, finishing time f_j, response time R_j
- Performance metrics for schedules:
 - lateness L_j, tardiness E_j, laxity X_j
- Properties of schedules, sets of jobs, and scheduling algorithms:
 - feasibility of schedules
 - schedulability of sets of jobs and tasks
 - optimality of scheduling algorithms
- Recurrent task models:
 - periodic, sporadic, aperiodic, synchronous vs asynchronous
- Scheduling algorithms:
 - Shortest-Job-First (SJF)
 - Earliest-Due-Date (EDD)
 - Earliest-Deadline-First (EDF)
Appendix

Some Examples for Multiprocessor Scheduling
Why is Real-Time Scheduling Hard? Multiprocessor Anomalies

- Partitioned scheduling (Each task/job is on a processor)
 - As most partitioning algorithms are not optimal, a system might become infeasible with
 - Less execution time of a task/job
 - Less number of tasks/jobs
 - More number of processors/machines

- Global scheduling
 - As most priority-assignment algorithms are not optimal, a system might become infeasible with
 - Less execution time of a task/job
 - Less number of tasks/jobs
 - More number of processors/machines
Precedence Constraints

Jobs (and tasks) may have to execute in a pre-specified order.
Multiprocessor Anomaly: Case 1

On 3 processors

Removing the precedence constraints on J_4...
Multiprocessor Anomaly: Case 1

On 3 processors

Removing the precedence constraints on J_4...
Reduce the execution time by 1, and schedule on 3 processors
Multiprocessor Anomaly: Case 3

On 4 processors

Use 4 processors

Jan Reineke
Task Models and Scheduling
June 27th, 2013
Multiprocessor Anomaly: Case 3

On 4 processors

Use 4 processors