Design and Analysis of Real-Time Systems
Caches in WCET Analysis

Jan Reineke
Department of Computer Science
Saarland University
Saarbrücken, Germany

Advanced Lecture, Summer 2013
Outline

1. Caches
2. Cache Analysis for Least-Recently-Used
3. Beyond Least-Recently-Used
 - Predictability Metrics
 - Relative Competitiveness
 - Sensitivity – Caches and Measurement-Based Timing Analysis
4. Summary
Outline

1 Caches

2 Cache Analysis for Least-Recently-Used

3 Beyond Least-Recently-Used
 - Predictability Metrics
 - Relative Competitiveness
 - Sensitivity – Caches and Measurement-Based Timing Analysis

4 Summary
Caches

- How they work:
 - dynamically
 - managed by replacement policy

Why they work: *principle of locality*
- spatial
- temporal

[Diagram of CPU, Cache, Main Memory with capacities and latencies: 32 KB, 3 cycles for the cache; 2 MB, 100 cycles for main memory]
Caches

- How they work:
 - dynamically
 - managed by replacement policy

![Diagram of CPU, Cache, and Main Memory]

- Why they work: *principle of locality*
 - spatial
 - temporal

- Capacity:
 - CPU: 32 KB
 - Main Memory: 2 MB

- Latency:
 - CPU: 3 cycles
 - Main Memory: 100 cycles
Caches

- How they work:
 - dynamically
 - managed by replacement policy

- Why they work: *principle of locality*
 - spatial
 - temporal

[Diagram showing CPU, Cache, Main Memory connections and cache capacity and latency values: 32 KB/3 cycles, 2 MB/100 cycles]
Caches

- How they work:
 - dynamically
 - managed by replacement policy

- Why they work: *principle of locality*
 - spatial
 - temporal

![Diagram showing CPU, Cache, and Main Memory with capacity and latency details.]

- Capacities:
 - CPU Cache: 32 KB
 - Main Memory: 2 MB

- Latencies:
 - CPU Cache: 3 cycles
 - Main Memory: 100 cycles

“miss” [ab]
Caches

- How they work:
 - dynamically
 - managed by replacement policy

- Why they work: *principle of locality*
 - spatial
 - temporal

![Diagram of cache system]

- **CPU**
 - Capacity: 32 KB
 - Latency: 3 cycles

- **Cache**
 - "miss" [ab]

- **Main Memory**
 - 2 MB
 - 100 cycles
Caches

- How they work:
 - dynamically
 - managed by replacement policy

![Diagram of CPU, Cache, and Main Memory with "miss" and formulas]

- Why they work: *principle of locality*
 - spatial
 - temporal

- Capacity:
 - CPU: 32 KB
 - Main Memory: 2 MB

- Latency:
 - CPU: 3 cycles
 - Main Memory: 100 cycles

\[c_3 = \langle c_1 c_2 c_3 c_4 \rangle ! \]
Caches

- How they work:
 - dynamically
 - managed by replacement policy

```
CPU                      Cache                      Main Memory
```

```
Capacity: 32 KB
Latency: 3 cycles
```

```
Capacity: 2 MB
Latency: 100 cycles
```

- Why they work: *principle of locality*
 - spatial
 - temporal
Caches

- How they work:
 - dynamically
 - managed by replacement policy

- Why they work: *principle of locality*
 - spatial
 - temporal

```
CPU -> Cache ("hit") [ac] -> Main Memory
```

Capacity:
- CPU Cache: 32 KB
- Main Memory: 2 MB

Latency:
- CPU Cache: 3 cycles
- Main Memory: 100 cycles
Caches

- How they work:
 - dynamically
 - managed by replacement policy

```
<table>
<thead>
<tr>
<th>CPU</th>
<th>Cache</th>
<th>Main Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity: 32 KB</td>
<td></td>
<td>2 MB</td>
</tr>
<tr>
<td>Latency: 3 cycles</td>
<td></td>
<td>100 cycles</td>
</tr>
</tbody>
</table>
```

Why they work: *principle of locality*
- spatial
- temporal
Fully-Associative Caches

Address:

Tag

Block offset

$\log_2(8 \times b)$

MUX

Data

Yes: Hit!

No: Miss!

$k = \text{associativity}$

Table:

<table>
<thead>
<tr>
<th>Tag</th>
<th>Data Block</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag</td>
<td>Data Block</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$=?$
Set-Associative Caches

Special cases:
- direct-mapped cache: only one line per cache set
- fully-associative cache: only one cache set
Cache Replacement Policies

- Least-Recently-Used (LRU) used in Intel Pentium I and MIPS 24K/34K
- First-In First-Out (FIFO or Round-Robin) used in Motorola PowerPC 56x, Intel XScale, ARM9, ARM11
- Pseudo-LRU (PLRU) used in Intel Pentium II-IV and PowerPC 75x
- Most Recently Used (MRU) as described in literature

Each cache set is treated independently:

→ Set-associative caches are compositions of fully-associative caches.
Outline

1. Caches

2. Cache Analysis for Least-Recently-Used

3. Beyond Least-Recently-Used
 - Predictability Metrics
 - Relative Competitiveness
 - Sensitivity – Caches and Measurement-Based Timing Analysis

4. Summary
Cache Analysis

Two types of cache analyses:

1. Local guarantees: classification of individual accesses
 - May-Analysis → Overapproximates cache contents
 - Must-Analysis → Underapproximates cache contents

2. Global guarantees: bounds on cache hits/misses

- Cache analyses almost exclusively for LRU
- In practice: FIFO, PLRU, ...
Challenges for Cache Analysis

Always a cache hit/always a miss?

1. Initial cache contents unknown.
2. Different paths lead to these points.
3. Cannot resolve address of z.

Jan Reineke
Caches in WCET Analysis
Advanced Lecture, 2013
Challenges for Cache Analysis

Always a cache hit/always a miss?

1. Initial cache contents unknown.
2. Different paths lead to these points.
3. Cannot resolve address of z.

Jan Reineke
Caches in WCET Analysis
Advanced Lecture, 2013
Deriving Invariants about Cache States using Abstract Interpretation

Collecting Semantics = set of states at each program point that any execution may encounter there

Two approximations:

- Collecting Semantics uncomputable
- Cache Semantics computable
- $\subseteq (Abstract$ $Cache$ $Sem.)$ efficiently computable
Deriving Invariants about Cache States using Abstract Interpretation

Collecting Semantics = set of states at each program point that any execution may encounter there

Two approximations:

- Collecting Semantics uncomputable
- \(\subseteq \) Cache Semantics computable
- \(\subseteq \gamma(A) \) (Abstract Cache Sem.) efficiently computable
Deriving Invariants about Cache States using Abstract Interpretation

Collecting Semantics = set of states at each program point that any execution may encounter there

Two approximations:

- Collecting Semantics uncomputable
- \(\subseteq \) Cache Semantics computable
- \(\subseteq \gamma(\text{Abstract Cache Sem.}) \) efficiently computable
Deriving Invariants about Cache States using Abstract Interpretation

Collecting Semantics = set of states at each program point that any execution may encounter there

Two approximations:
- Collecting Semantics uncomputable
- Cache Semantics computable
- \subseteq Actual Cache Semantics
- \subseteq γ(Abstract Cache Sem.) efficiently computable
Deriving Invariants about Cache States using Abstract Interpretation

Collecting Semantics =
set of states at each program point that any execution may encounter there

Two approximations:
- Collecting Semantics uncomputable
- \subseteq Cache Semantics computable
- $\subseteq \gamma$(Abstract Cache Sem.) efficiently computable
Least-Recently-Used (LRU): Concrete Behavior

“Cache Miss”:

```
  z
  y
  x
  t
```

LRU has notion of age

```
  s
  z
  y
  x
```

“Cache Hit”:

```
  z
  y
  s
  t
```

```
  s
  z
  y
  t
```
LRU: Must-Analysis: Abstract Domain

- Used to predict *cache hits*.
- Maintains *upper bounds on ages* of memory blocks.
- Upper bound \leq associativity \rightarrow memory block definitely cached.

Example

<table>
<thead>
<tr>
<th>Abstract state:</th>
<th>age 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>${x}$</td>
<td></td>
</tr>
<tr>
<td>${}$</td>
<td></td>
</tr>
<tr>
<td>${s,t}$</td>
<td></td>
</tr>
<tr>
<td>${}$</td>
<td></td>
</tr>
</tbody>
</table>

\[\gamma([\{x\}, \{\}, \{s,t\}, \{\}]) = \{[x, s, t, a], [x, t, s, a], [x, s, t, b], \ldots\} \]

... and its interpretation:

- Describes the set of all concrete cache states in which x, s, and t occur,
 - x with an age of 0,
 - s and t with an age not older than 2.
Sound Update – Local Consistency

Abstract Update

γ

Lifted Concrete Update

Concrete cache states

Concrete cache states

$(must) \rightarrow (must')$
LRU: Must-Analysis: Update

"Potential Cache Miss":

{x}	{z}
{}	{}
{s,t}	{}
{}	{s,t}

"Definite Cache Hit":

{x}	{s}
{}	{x}
{s,t}	{t}
{}	{}

Why does \(t \) not age in the second case?
LRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures γ is monotone):

- $\gamma(A) \subseteq \gamma(A \cup B)$
- $\gamma(B) \subseteq \gamma(A \cup B)$

```
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>c</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{c,f}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{d}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intersection + Maximal Age
```
LRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures γ is monotone):

- $\gamma(A) \subseteq \gamma(A \cup B)$
- $\gamma(B) \subseteq \gamma(A \cup B)$

```
\{a\} \quad \{c\} \quad \{\}
\{\} \quad \{e\} \quad \{\}
\{c,f\} \quad \{a\} \quad \{a,c\}
\{d\} \quad \{d\} \quad \{d\}
```

“Intersection + Maximal Age”
LRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures γ is monotone):
- $\gamma(A) \subseteq \gamma(A \cup B)$
- $\gamma(B) \subseteq \gamma(A \cup B)$

```
\{a\}  \{c\}  \{\}
\{\}  \{e\}  \{}
\{c,f\}  \{a\}  \{a,c\}
\{d\}  \{d\}  \{d\}
```

“Intersection + Maximal Age”
LRU: Must-Analysis: Join

Need to combine information where control-flow merges. Join should be conservative (ensures γ is monotone):

- $\gamma(A) \subseteq \gamma(A \cup B)$
- $\gamma(B) \subseteq \gamma(A \cup B)$

```
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>{a}</td>
<td></td>
<td>{c}</td>
</tr>
<tr>
<td>{c}</td>
<td></td>
<td>{e}</td>
</tr>
<tr>
<td>{a}</td>
<td>{d}</td>
<td></td>
</tr>
<tr>
<td>{d}</td>
<td></td>
<td>{d}</td>
</tr>
</tbody>
</table>
```

“Intersection + Maximal Age”
LRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures γ is monotone):

- $\gamma(A) \subseteq \gamma(A \cup B)$
- $\gamma(B) \subseteq \gamma(A \cup B)$

\[\begin{array}{c}
\{a\} \\
\{\} \\
\{c,f\} \\
\{d\}
\end{array} \quad \sqcup \quad \begin{array}{c}
\{c\} \\
\{e\} \\
\{a\} \\
\{d\}
\end{array} \quad \begin{array}{c}
\{\} \\
\{\} \\
\{a,c\} \\
\{d\}
\end{array} \]

“Intersection + Maximal Age”
LRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures γ is monotone):

- $\gamma(A) \subseteq \gamma(A \cup B)$
- $\gamma(B) \subseteq \gamma(A \cup B)$

```
{a}
{}
{c,f}
{d}

{c}
{e}
{a}
{d}

{ }
{ }
{a,c}
{d}
```

“Intersection + Maximal Age”
LRU: Must-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures γ is monotone):

- $\gamma(A) \subseteq \gamma(A \cup B)$
- $\gamma(B) \subseteq \gamma(A \cup B)$

```
<table>
<thead>
<tr>
<th></th>
<th>{a}</th>
<th>{c}</th>
<th>{}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{}</td>
<td>{e}</td>
<td>{}</td>
</tr>
<tr>
<td></td>
<td>{c,f}</td>
<td>{a}</td>
<td>{a,c}</td>
</tr>
<tr>
<td></td>
<td>{d}</td>
<td>{d}</td>
<td>{d}</td>
</tr>
</tbody>
</table>
```

“Intersection + Maximal Age”

How many memory blocks can be in the must-cache?
Example: Must-Analysis

```
entry [{}], [{}, {}, {}, {}], exit
```

A → B → D → C → A
Example: Must-Analysis

Entry: [{}, {}, {}, {}]

\[\downarrow \sqcup [{}, {}, {}, {}] = [{}, {}, {}, {}]\]

Diagram:

- Entry: [{}, {}, {}, {}]
- A
- B
- C
- D
- Exit: \[\downarrow\]
Example: Must-Analysis

\[\text{entry} \quad [\{\}, \{\}, \{\}, \{\}, \{\}] \]

\[\bot \sqcup [\{\}, \{\}, \{\}, \{\}, \{\}] = [\{\}, \{\}, \{\}, \{\}, \{\}] \]

\[[\{A\}, \{\}, \{\}, \{\}, \{\}] \]

entry → A

A → B

B → C

C → D

D → exit

\[\bot \]
Example: Must-Analysis

\[\text{entry} \quad \{\}, \{\}, \{\}, \{\}, \{\}\]

\[\downarrow \sqcup [\{\}, \{\}, \{\}, \{\}] = [\{\}, \{\}, \{\}, \{\}]

\[\{A\}, \{\}, \{\}, \{\}, \{\}\]

\[\{A\}, \{\}, \{\}, \{\}, \{\}\]

\[\downarrow \sqcup [\{B\}, \{A\}, \{\}, \{\}] \sqcup [\{C\}, \{A\}, \{\}, \{\}] = [\{\}, \{A\}, \{\}, \{\}]

\[\{A\}, \{\}, \{\}, \{\}, \{\}\]

\[\{A\}, \{\}, \{\}, \{\}, \{\}\]

\[\{B\}, \{A\}, \{\}, \{\}\]

\[\{C\}, \{A\}, \{\}, \{\}\]

\[\{\}, \{A\}, \{\}, \{\}\]

\[\{\}, \{A\}, \{\}, \{\}\]

\[\downarrow \sqcup [\{\}, \{\}, \{\}, \{\}] = [\{\}, \{\}, \{\}, \{\}]

\[\text{exit} \quad \downarrow\]
Example: Must-Analysis

\[
\begin{align*}
\text{entry} & \quad [\{\}, \{\}, \{\}, \{\}, \{\}] \\
\{\{D\}, \{\}, \{A\}, \{\}\} \uplus [\{\}, \{\}, \{\}, \{\}, \{\}] & = [\{\}, \{\}, \{\}, \{\}, \{\}] \\
[\{A\}, \{\}, \{\}, \{\}, \{\}] & \quad \text{exit} \quad [\{D\}, \{\}, \{A\}, \{\}] \\
[\{B\}, \{A\}, \{\}, \{\}] \uplus [\{C\}, \{A\}, \{\}, \{\}] & = [\{\}, \{A\}, \{\}, \{\}] \\
\end{align*}
\]

No cache hits can be predicted :-(

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 17 / 51
Context-Sensitive Analysis/Virtual Loop-Unrolling

- **Problem:**
 - The first iteration of a loop will always result in cache misses.
 - Similarly for the first execution of a function.
- **Solution:**
 - Virtually Unroll Loops: Distinguish the first iteration from others
 - Distinguish function calls by calling context.

Virtually unrolling the loop once:
- **Accesses to** A and D are provably hits after the first iteration
- **Accesses to** B and C can still not be classified. Within each execution of the loop, they may only miss once.
 → Persistence Analysis
LRU: May-Analysis: Abstract Domain

- Used to predict cache misses.
- Maintains lower bounds on ages of memory blocks.
- Lower bound \(\geq \) associativity

\[\rightarrow \text{memory block definitely not cached.} \]

Example

<table>
<thead>
<tr>
<th>Abstract state:</th>
<th>Describes the set of all concrete cache states in which no memory blocks except (x, y, s, t,) and (u) occur,</th>
</tr>
</thead>
<tbody>
<tr>
<td>{x,y} age 0</td>
<td>(x) and (y) with an age of at least 0,</td>
</tr>
<tr>
<td>{}</td>
<td>(s) and (t) with an age of at least 2,</td>
</tr>
<tr>
<td>{s,t} age 3</td>
<td>(u) with an age of at least 3.</td>
</tr>
<tr>
<td>{u}</td>
<td>(\gamma([{x, y}, {}, {s, t}, {u}]) = {[x, y, s, t], [y, x, s, t], [x, y, s, u], \ldots})</td>
</tr>
</tbody>
</table>

\[\gamma([\{x, y\}, \{\}, \{s, t\}, \{u\}]) = \{[x, y, s, t], [y, x, s, t], [x, y, s, u], \ldots\}\]
LRU: May-Analysis: Update

“Definite Cache Miss”:

```
{z}  ->  {s,t}
{y}  ->  {s,t}
{}   ->  {}
{x}  ->  {x}
```

“Potential Cache Hit”:

```
{s}   ->  {s}
{y}   ->  {y,t}
{}   ->  {}
{x}  ->  {x}
```

Why does t age in the second case?
LRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures γ is monotone):

- $\gamma(A) \subseteq \gamma(A \cup B)$
- $\gamma(B) \subseteq \gamma(A \cup B)$

\[
\begin{array}{c|c|c}
\{a\} & \{c\} & \{a,c\} \\
\{\} & \{e\} & \{e\} \\
\{c,f\} & \{a\} & \{f\} \\
\{d\} & \{d\} & \{d\}
\end{array}
\]

“Union + Minimal Age”
LRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures γ is monotone):

- $\gamma(A) \subseteq \gamma(A \sqcup B)$
- $\gamma(B) \subseteq \gamma(A \sqcup B)$

```
\[
\begin{array}{c|c|c}
\{a\} & \{c\} & \{a,c\} \\
\{\}  & \{e\}  & \{e\}  \\
\{c,f\} & \{a\}  & \{f\}  \\
\{d\}  & \{d\}  & \{d\}  \\
\end{array}
\]
```

“Union + Minimal Age”
LRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures γ is monotone):

- $\gamma(A) \subseteq \gamma(A \sqcup B)$
- $\gamma(B) \subseteq \gamma(A \sqcup B)$

```
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>{}</td>
<td>{c}</td>
</tr>
<tr>
<td>{}</td>
<td>{e}</td>
<td></td>
</tr>
<tr>
<td>{c,f}</td>
<td>{a}</td>
<td>{d}</td>
</tr>
<tr>
<td>{d}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

"Union + Minimal Age"
LRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures γ is monotone):

- $\gamma(A) \subseteq \gamma(A \sqcup B)$
- $\gamma(B) \subseteq \gamma(A \sqcup B)$

```
\begin{array}{c}
\{a\} \\
\{} \\
\{c,f\} \\
\{d\}
\end{array}
\sqcup
\begin{array}{c}
\{c\} \\
\{e\} \\
\{a\} \\
\{d\}
\end{array}
= \\
\begin{array}{c}
\{a,c\} \\
\{e\} \\
\{f\} \\
\{d\}
\end{array}
```

“Union + Minimal Age”
LRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures γ is monotone):

- $\gamma(A) \subseteq \gamma(A \cup B)$
- $\gamma(B) \subseteq \gamma(A \cup B)$

```
\[
\begin{array}{c|c|c}
& \{a\} & \{c\} \\
\hline
\{\} & \{e\} & \{e\} \\
\{c,f\} & \{a\} & \{f\} \\
\{d\} & \{d\} & \{d\}
\end{array}
\]
```

"Union + Minimal Age"
LRU: May-Analysis: Join

Need to combine information where control-flow merges.

Join should be conservative (ensures γ is monotone):

- $\gamma(A) \subseteq \gamma(A \sqcup B)$
- $\gamma(B) \subseteq \gamma(A \sqcup B)$

```
\[
\begin{array}{c}
\{a\} \\
\{c,f\} \\
\{d\} \\
\{\}
\end{array}
\sqcup
\begin{array}{c}
\{c\} \\
\{e\} \\
\{a\} \\
\{d\}
\end{array}
= 
\begin{array}{c}
\{a,c\} \\
\{e\} \\
\{f\} \\
\{d\}
\end{array}
\]
```

“Union + Minimal Age”