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Partial Order of Abstractions

Relational domains
Polyhedra

Octagons Linear Congruences

!

I
}"Q Simple Congruences

Constants Signs Parity
Independent attribute/non-relational domains

More domains are described at: http://bugseng.com/products/ppl/abstractions



Example: Interval Analysis
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Example: Interval Analysis
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Example: Interval Analysis

x=0

x2[03] x-=>[02] x=2[0,1 x =2[00] x 2 [3,3]
y=2[37] y=2[85 y=2[33 y=>top y 2> [3,7]

x=>[02] x-=>[01] x-=>[00]

y=>[35] y=>[33] y-=>top

Imprecise
x>[1,3] x>[12] x=>[11] ,f/;:tlfgnf;n-
2> fo

y=>[35 y=>I[33 Y p analysis

x=>[1,3] x=2>[1,2] x=>[11]

y=21[26] y=>[24] y=2[22]




Example: Interval Analysis

x >[0,3] x=>[02]
y>[37] y=2[35]

x =>[0,2]
y 2 [3,5]

x >[1,3]
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y 2[2,2]
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Neg(x < 3)]

o= y > [37]
Imprecise
due to non-
relational
analysis

Would Octagons

determine that y must be
/7 at program point 57
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Intervals, Hasse diagram
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Intervals, Hasse diagram

Ascending chain condition [-infty, /nftyi

is not satisfied! ’ S o
- Kleene lteration is not 7 ,
guaranteed to terminate! [-infty, 1] [-1, infty]

e AN
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r— 1

x +— |0, 0]
x — [0, 1] (/Q;\

1000 iterations later —> I +» [0, 1000]

Example: Interval Analysis

x=0
v

Neg(x < 1000)

Pos(x < 1000)

v

2

X = X+1

=)



Solution: Widening
“Enforce Ascending Chain Condition”

\ {x|xZlfp F}

safe
but
possibly imprecise

o Widening enforces the
ascending chain
condition during analysis.

o Accelerates termination
by moving up the lattice
more quickly.

o May yield imprecise
results... b I




Widening: Formal Requirement

A widening V is an operator V: D x D — D such that
1. Safety:xL(xVy)andyL(xVy)
2. Termination:
for all ascending chains x, £ x4 E ... the chain
Yo = Xo

Yier  =VYi V Xy
IS finite.



Widening Operator for Intervals

Simplest solution:
1V = 2VL ==«

1, u] V[l u]
Example:
3,5|V |2, 5]
3,5|V1[4,5
3,5|V1]4,6
3,5]V1[2,6)

[

:—OO, 5]
3, 5]
3, 00

:—OO, OO]

>
<l

|

Uu

O



Example Revisited:

Interval Analysis with Simple Widening

Standard Kleene lIteration:

L<F) <P <

F(1) <

Kleene Iteration with W/denmg Fv( ) = 2V F(x)

;
z > [0, 0] /QN,e\mmow

T — [0’ OO] Pos(x < 1000)

v

2

X = X+1

=)



Example Revisited:
Interval Analysis with Simple Widening

Standard Kleene lIteration:

L<F(L)<FYL)<F°(L) <

Kleene Iteration with W/denmg Fv( ) = 2V F(x)

T = [0’ O] (/Q—Neg(xdoom —»@
T — [0’ OO] Pos(x;ﬂ;:)O)\X:X_'_1

2

- Quick termination but imprecise result!



More Sophisticated Widening for Intervals

Define set of jump points (barriers) based on
constants appearing in program, e.g.:

J ={—00,0,1,1000, cc}

Intuition: “Don’t jump to —infty, +infty immediately
but only to next jump point.”

1,u] V[, u'] = Hl =

max{re€ J |z <l'} :I'<l’

U u <
min{r € J |z >u} :u >u



Example Revisited:
Interval Analysis with Sophisticated Widening

x=0
v

— 10,0
x :O, 1} (/@;N{(K 1000) —»@
x — |0,

r — [0,1000] [Eosx<1000)] 55

v

2




Example Revisited:
Interval Analysis with Sophisticated Widening

x=0
v

— 10,0
x :O, 1} (/@;N{(K 1000) —»@
x — |0,

r — [0,1000] [Eosx<1000)] 55

v

2

- More precise, potentially terminates more slowly.



Example Revisited:
Interval Analysis with Sophisticated Widening

x=0
v

x — [0, 0]

o] — ST
T — |V,
z+—[0,1000] E=T TR fowr

2

- More precise, potentially terminates more slowly.

Do we need to apply widening “everywhere”?
Do we need to apply widening “immediately”?




Example Revisited:
Interval Analysis with Sophisticated Widening

x=0
v
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z+—[0,1000] E=T TR fowr

2

- More precise, potentially terminates more slowly.

Do we need to apply widening “everywhere”?
Do we need to apply widening “immediately”?




Selective Application of Widening

o To ensure convergence it is sufficient to apply
widening at cut points.

Cut points = set of locations that cut each loop
(in the control-flow graph)

o Delayed widening: apply a fixed number of
rounds of standard Kleene iteration before
starting to apply widening operator.



Another Example:
Interval Analysis with Sophisticated Widening

x=0
x — [0, 0]

] Neg(x < 1000) >
T > _O7 1] </|P ( 10‘(3 @
z — [0, 1000]

v




Another Example:
Interval Analysis with Sophisticated Widening

<D
Xx=0
x — [0, 0]
: ( 1 >—|Ne (x < 1000) |-»
X — O 1] </|P s : @
2+ [0, 1000]
y = [2,2]

y — [2,1000)«<— (4

y — (2, 00]




Another Example:
Interval Analysis with Sophisticated Widening

Xx=0
x — [0, 0]

: ( 1 >—|Ne (x < 1000) |-»
CIJ|—>O 1] </|P( 1000)9 @
2+ [0, 1000]

y = [2,2]

y — [2,1000] < (4 Would be [2, 2000] in

] least fixed point, but
Yy — |2, OO] <« 2000 does not appear
in the program...




Narrowing:
Recovering Precision {x|xZIfp F}

o Widening may vyield
Imprecise results by
overshooting the least
fixed point.

o Narrowing is used to
approach the least
fixed point from above.



Narrowing:
Recovering Precision {x|xZIfp F}

~

S
/

4

o Widening may vyield
Imprecise results by
overshooting the least
fixed point.

o Narrowing is used to
approach the least
fixed point from above.

How can we
safely move
down the
lattice?




Narrowing:
Recovering Precision {x|xZIfp F}

N

o Widening may vyield
Imprecise results by

o
overshooting the least /|
fixed point. /
.. 4
o Narrowing is used to
approach the least
fixed point from above.
How can we
Possible problem: infinite descending chains Ziﬁgtﬁg ve
Is it really a problem? |attice?




Narrowing:
Recovering Precision

Widening terminates at a point x Jd Ifp F.
We can iterate:

X = X

Xis = FOG)TTX

Safety:
By monotonicity we know F(x) 2 F(Ifp F) = Ifp F.
By induction we can easily show that x. < Ifp F for all i.

Termination:
Depends on existence of infinite descending chains.



Narrowing: Formal Requirement

A narrowing A is an operator A : D x D — D such that
1. Safety:lExandICy > IC(XAy)LX
2. Termination:
for all descending chains x, 2 X4 < ... the chain
Yo = Xo

Yier = Yi A Xiyq
IS finite.



Narrowing: Formal Requirement

A narrowing A is an operator A : D x D — D such that
1. Safety:lExandICy > IC(XAy)LX
2. Termination:

for all descending chains x, 2 X4 < ... the chain

Yo = X
Yier = Yi A Xiyq
IS finite.

Is [ ] (“meet”) a narrowing operator on intervals?



Another Example Revisited:
Interval Analysis with Widening and Narrowing

Result after Widening: @ Result after Narrowing:

x — [0, 0]
x+— [0,1] <
2+ [0, 1000]
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Another Example Revisited:
Interval Analysis with Widening and Narrowing
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Another Example Revisited:
Interval Analysis with Widening and Narrowing

Result after Widening: @ Result after Narrowing:
x=0
z — [0, 0] . — [1000, 1000]
- Neg(x < 1000) B
x — |0, 1] //|P ( 1000 g @ y — [3,2001]
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— [1, 1000]
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y — [2,1000] < ° \
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- Precisely the least fixed point!



Applications of Numerical Domains

As input to other analyses:
o Cache Analysis

o To detect dependencies between memory
accesses in pipeline

o Loop Bound Analysis:

Instrument program with loop iteration counters
Determine maximal value of counter
Requires relational analysis



State of the Art in Loop Bound Analysis

Multiple approaches of varying sophistication
o Pattern-based approach

o Data-flow based approach

o Slicing + Value Analysis + Invariant Analysis
o Reduction to Value Analysis



Loop Bound Analysis:
Pattern-based Approach

|dentify common loop patterns; derive loop
bounds for pattern once manually

for (x < 6)
{

X++



Loop Bound Analysis:
Pattern-based Approach

|dentify common loop patterns; derive loop
bounds for pattern once manually

for (x < 6)
{

No
—>| modification

X++ o of x.




Loop Bound Analysis:
Pattern-based Approach

|dentify common loop patterns; derive loop
bounds for pattern once manually

Initial value
of x?

for (x < 6)
{
No
—>| modification
X++,‘ of Xx.
}

- Loop bound: 6-minimal value of x



Loop Bound Analysis:
Data-flow-based Approach
[Cullmann and Martin, 2007]

Combination of multiple analyses:
1. ldentify possible loop counters

2. “Invariant analysis”: determine how loop
counters may change in one loop iteration

3. Bound calculation: combine results from
step 2 with branch conditions



_oop Bound Analysis:
Data-flow-based Approach
Cullmann and Martin, WCET 2007]

Example:

for (x < 6) {
yt+t;
if (y ¢ 2
X++;

0)

else
X = xX+2;
Z++;

4



_oop Bound Analysis:
Data-flow-based Approach
Cullmann and Martin, WCET 2007]

Example:
1. X, y,and z
are potential
for (x < 6) { loop counters
yt+t;
i1f (y ¢ 2 = 0)
X++;
else

X = X+2;
Z++;

4



_oop Bound Analysis:
Data-flow-based Approach
Cullmann and Martin, WCET 2007]

Example:
1. X, y,and z
are potential
for (x < 6) { loop counters
yt++;
if (y g 2 = 0) 2. Invariants:
x-xin [1,2]
X++; y-yin[1,1]
z-zin [1,1]
else
X = X+2;
Z++;

4



_oop Bound Analysis:
Data-flow-based Approach
Cullmann and Martin, WCET 2007]

Example:
1.x,y, and z
are potential
for (x < 6) { loop counters
yt++;
_'Lf (y g 2 = 0) 2. Invariants:
x-x in [1,2]
X++; y-yin [1,1]
z-zin [1,1]
else

X = xX+2;

. 3. Loop bound:
z++; 6 assuming x >= 0 initially




Slicing + Value Analysis + Invariant Analysis
[Ermedahl et al., WCET 2007]

Combination of multiple analyses:

1. Slicing: eliminate code that is irrelevant for
loop termination

2. Value analysis: determine possible values of
all variables in slice

3. Invariant analysis: determine variables that
do not change during loop execution

4. Loop bound = set of possible valuations of
non-invariant variables

Program slicing is the computation of the set of programs statements, the program slice,
that may affect the values at some point of interest, referred to as a slicing criterion.




Slicing + Value Analysis + Invariant Analysis
[Ermedahl et al., WCET 2007]

Step 1: Slicing with
slicing criterion (i <= INPUT)

int OUTPUT = 0;
int 1 = 1;

while (i <= INPUT) { | int i = 1;
OUTPUT += 2; while (i <= INPUT) {
i += 2; i += 2;




Slicing + Value Analysis + Invariant Analysis
[Ermedahl et al., WCET 2007]

Step 2: Value Analysis
Observation:

If the loop terminates, the program can only be in
any particular state once.

- Determine number of states the program can
be in at the loop header.

. . Value Analysis:
int 1 = I; INPUT in [10, 20] (assumption)
while (i1 <= INPUT) { | iin[1,20],i%2=1

i += 2;




Slicing + Value Analysis + Invariant Analysis
[Ermedahl et al., WCET 2007]

Step 2: Value Analysis
Observation:

If the loop terminates, the program can only be in
any particular state once.

- Determine number of states the program can
be in at the loop header.

. . Value Analysis:
int 1 = I; INPUT in [10, 20] (assumption)
while (i1 <= INPUT) { | iin[1,20],i%2=1

1+=2; > 11 * 10 states
} - Loop bound 110!




Slicing + Value Analysis + Invariant Analysis
[Ermedahl et al., WCET 2007]

Step 3: Invariant Analysis

Observation:

Value of INPUT is not completely known, but
INPUT does not change during loop.

- Determine variables that are invariant during
loop.

int 1 = 1; Value Analysis:

while (i <= INPUT) { {NPUTin [1 0 20] (assumption)
. iin[1,20],i%2=1
1 += 2;




Slicing + Value Analysis + Invariant Analysis
[Ermedahl et al., WCET 2007]

Step 3: Invariant Analysis

Observation:

Value of INPUT is not completely known, but
INPUT does not change during loop.

- Determine variables that are invariant during
loop.

int 1 = 1; Value Analysis:

while (i <= INPUT) { {NPUTin [1 0 20] (assumption)
. iin[1,20],i%2=1
1 += 2;

} - INPUT is invariant!
- Loop bound 10!




Reduction:

Loop Bound Analysis to Value Analysis
()
@ X

[
x

S
o

X=X%5 a
-: 42
0 Instrument program !
y=42 with counters of loop @
(> )— ey iterations and other 5990 =0
S(X <

interesting events leftc = 0
rightc =0

v
> (3 )—Neg<y)

/DZS(X <y)

b = M[x+1]

a = M[x

I

Pos(a<b) Neg(a<b) Pos(a<b) Neg(a<b)
X = X+1 leftc++ rightc++
X = X+2 X = X+1

] L |



Reduction:

Loop Bound Analysis to Value Analysis

<D :

X% 5

X=X%5 a
= 42
0 Instrument program !
y =42 with counters of loop @
(2 )—Reaw=y Iterations and other 5006 =0
interesting events leftc = 0
Pos(x <) rlghti =0
e o Neg(x <)
Upper bound for
e loopc is loop bound! e
Pos(a<b) Neg(a<b) Pos(a<b)
leftc++ rightc++
X = X+2 X = X+1

] L |



Reduction:

Loop Bound Analysis to Value Analysis

Pos(a<b)

X=X%5

<
Il
N
N

<
o

2
“H~)
A

<

)

Neg(x <vy)

Neg(a<b)

Instrument program
with counters of loop
iterations and other
interesting events

)

Upper bound for
loopc is loop bound!

loopc =0
leftc=0
rightc =0

v

Requires very
powerful relational
analysis...

&

leftc++
X = X+2

L]

Pos(a<b)

Neg(x <)

&

rightc++
X = X+1

L



Summary

o Interval Analysis:
A non-relational value analysis

o Widenings for termination in the presence of
Infinite Ascending Chains

o Narrowings to recover precision

o Basic Approach to Loop Bound Analysis based
on Value Analysis



Outlook

o Cache Abstractions

o Schedulability Analysis

o Cache-Related Preemption Delay
o Predictable Microarchitectures



