Design and Analysis of Real-Time Systems Foundations of Abstract Interpretation and Numerical Abstractions

Jan Reineke

Advanced Lecture, Summer 2013

Partial Order of Abstractions

More domains are described at: http://bugseng.com/products/ppl/abstractions

$$x \to [0,3]$$
 $x \to [0,2]$ $x \to [0,1]$ $x \to [0,0]$
 $y \to [3,7]$ $y \to [3,5]$ $y \to [3,3]$ $y \to top$

$$x \to [0,2] \quad x \to [0,1] \quad x \to [0,0]$$

$$y \to [3,5] \quad y \to [3,3] \quad y \to top$$

$$x \to [1,3] \quad x \to [1,2] \quad x \to [1,1]$$

$$y \to [3,5] \quad y \to [3,3] \quad y \to top$$

$$x \to [1,3] \quad x \to [1,2] \quad x \to [1,1]$$

$$y \to [2,6] \quad y \to [2,4] \quad y \to [2,2]$$

$$x \to [0,3]$$
 $x \to [0,2]$ $x \to [0,1]$ $x \to [0,0]$
 $y \to [3,7]$ $y \to [3,5]$ $y \to [3,3]$ $y \to top$

$$x \to [0,2] \quad x \to [0,1] \quad x \to [0,0]$$

$$y \to [3,5] \quad y \to [3,3] \quad y \to top$$

$$x \to [1,3] \quad x \to [1,2] \quad x \to [1,1]$$

$$y \to [3,5] \quad y \to [3,3] \quad y \to top$$

$$x \to [1,3] \quad x \to [1,2] \quad x \to [1,1]$$

$$y \to [2,6] \quad y \to [2,4] \quad y \to [2,2]$$

$$x \to [0,3]$$
 $x \to [0,2]$ $x \to [0,1]$ $x \to [0,0]$
 $y \to [3,7]$ $y \to [3,5]$ $y \to [3,3]$ $y \to top$

$$x \to [0,2] \quad x \to [0,1] \quad x \to [0,0]$$

$$y \to [3,5] \quad y \to [3,3] \quad y \to top$$

$$x \to [1,3] \quad x \to [1,2] \quad x \to [1,1]$$

$$y \to [3,5] \quad y \to [3,3] \quad y \to top$$

$$x \to [1,3] \quad x \to [1,2] \quad x \to [1,1]$$

$$y \to [2,6] \quad y \to [2,4] \quad y \to [2,2]$$

Intervals, Hasse diagram

Intervals, Hasse diagram

Solution: Widening "Enforce Ascending Chain Condition"

- Widening enforces the ascending chain condition during analysis.
- Accelerates termination by moving up the lattice more quickly.
- May yield imprecise results...

• • Widening: Formal Requirement

A widening ∇ is an operator ∇ : D x D \rightarrow D such that

- Safety: $x \sqsubseteq (x \nabla y)$ and $y \sqsubseteq (x \nabla y)$
- 2. Termination:

for all ascending chains $x_0 \subseteq x_1 \subseteq ...$ the chain $y_0 = x_0$ $y_{i+1} = y_i \nabla x_{i+1}$

is finite.

Widening Operator for Intervals

Simplest solution:

Example:

$$[3,5]\nabla[2,5] = [-\infty,5]$$

$$[3,5]\nabla[4,5] = [3,5]$$

$$[3,5]\nabla[4,6] = [3,\infty]$$

$$[3,5]\nabla[2,6] = [-\infty,\infty]$$

Example Revisited: Interval Analysis with Simple Widening

Standard Kleene Iteration:

$$\perp \leq F(\perp) \leq F^2(\perp) \leq F^3(\perp) \leq \dots$$

Kleene Iteration with Widening: $F_{\nabla}(x) := x \nabla F(x)$ $\bot \leq F_{\nabla}(\bot) \leq F_{\nabla}^2(\bot) \leq F_{\nabla}^3(\bot) \leq \ldots$

Example Revisited: Interval Analysis with Simple Widening

Standard Kleene Iteration:

$$\perp \leq F(\perp) \leq F^2(\perp) \leq F^3(\perp) \leq \dots$$

Kleene Iteration with Widening: $F_{\nabla}(x) := x \nabla F(x)$ $\bot \leq F_{\nabla}(\bot) \leq F_{\nabla}^2(\bot) \leq F_{\nabla}^3(\bot) \leq \ldots$

→ Quick termination but imprecise result!

More Sophisticated Widening for Intervals

Define set of jump points (barriers) based on constants appearing in program, e.g.:

$$\mathcal{J} = \{-\infty, 0, 1, 1000, \infty\}$$

Intuition: "Don't jump to –infty, +infty immediately but only to next jump point."

$$[l, u]\nabla[l', u'] = \begin{bmatrix} \begin{cases} l & : l' \ge l \\ \max\{x \in \mathcal{J} \mid x \le l'\} & : l' < l \end{cases},$$
$$\begin{cases} u & : u' \le u \\ \min\{x \in \mathcal{J} \mid x \ge u'\} & : u' > u \end{bmatrix}$$

→ More precise, potentially terminates more slowly.

→ More precise, potentially terminates more slowly.

Do we need to apply widening "everywhere"? Do we need to apply widening "immediately"?

→ More precise, potentially terminates more slowly.

Do we need to apply widening "everywhere"? Do we need to apply widening "immediately"?

Selective Application of Widening

 To ensure convergence it is sufficient to apply widening at cut points.

Cut points = set of locations that cut each loop (in the control-flow graph)

 Delayed widening: apply a fixed number of rounds of standard Kleene iteration before starting to apply widening operator.

Another Example: Interval Analysis with Sophisticated Widening

Another Example: Interval Analysis with Sophisticated Widening

Another Example: Interval Analysis with Sophisticated Widening

Narrowing: Recovering Precision

 Widening may yield imprecise results by overshooting the least fixed point.

 Narrowing is used to approach the least fixed point from above.

Narrowing: Recovering Precision

 Widening may yield imprecise results by overshooting the least fixed point.

 Narrowing is used to approach the least fixed point from above.

Narrowing: Recovering Precision

 Widening may yield imprecise results by overshooting the least fixed point.

 Narrowing is used to approach the least fixed point from above.

Possible problem: infinite descending chains Is it really a problem?

Narrowing: Recovering Precision

Widening terminates at a point $x \supseteq Ifp F$.

We can iterate:

$$x_0 = x$$

 $x_{i+1} = F(x_i) \sqcap x_i$

Safety:

By monotonicity we know $F(x) \supseteq F(Ifp F) = Ifp F$. By induction we can easily show that $x_i \supseteq Ifp F$ for all i.

Termination:

Depends on existence of infinite descending chains.

Narrowing: Formal Requirement

A narrowing Δ is an operator Δ : D x D \rightarrow D such that

- 1. Safety: $I \subseteq x$ and $I \subseteq y \rightarrow I \subseteq (x \triangle y) \subseteq x$
- 2. Termination:

for all descending chains $x_0 \supseteq x_1 \supseteq ...$ the chain $y_0 = x_0$ $y_{i+1} = y_i \triangle x_{i+1}$ is finite.

Narrowing: Formal Requirement

A narrowing Δ is an operator Δ : D x D \rightarrow D such that

- 1. Safety: $I \subseteq x$ and $I \subseteq y \rightarrow I \subseteq (x \triangle y) \subseteq x$
- 2. Termination:

for all descending chains $x_0 \supseteq x_1 \supseteq ...$ the chain $y_0 = x_0$ $y_{i+1} = y_i \triangle x_{i+1}$ is finite.

Is ☐ ("meet") a narrowing operator on intervals?

Another Example Revisited: Interval Analysis with Widening and Narrowing

Another Example Revisited: Interval Analysis with Widening and Narrowing

Result after Narrowing:

Applications of Numerical Domains

As input to other analyses:

- Cache Analysis
- To detect dependencies between memory accesses in pipeline
- Loop Bound Analysis:
 - Instrument program with loop iteration counters
 - Determine maximal value of counter
 - Requires relational analysis

State of the Art in Loop Bound Analysis

Multiple approaches of varying sophistication

- Pattern-based approach
- Data-flow based approach
- Slicing + Value Analysis + Invariant Analysis
- Reduction to Value Analysis

Loop Bound Analysis: Pattern-based Approach

Identify common loop patterns; derive loop bounds for pattern once manually

```
for (x < 6)
{
    ...
    x++;
}</pre>
```

Loop Bound Analysis: Pattern-based Approach

Identify common loop patterns; derive loop bounds for pattern once manually

```
for (x < 6)
{

...

x++;

No

modification

of x.

}
```

Loop Bound Analysis: Pattern-based Approach

Identify common loop patterns; derive loop bounds for pattern once manually

```
for (x < 6)

{

...

x++;

Initial value of x?

No modification of x.

}
```

→ Loop bound: 6-minimal value of x

Combination of multiple analyses:

- Identify possible loop counters
- "Invariant analysis": determine how loop counters may change in one loop iteration
- Bound calculation: combine results from step 2 with branch conditions

Example:

```
for (x < 6) {
  y++;
   if (y % 2 = 0)
    X++;
   else
    x = x+2;
   z++;
```

Example:

```
for (x < 6) {
   y++;
   if (y % 2 = 0)
     X++;
   else
     x = x+2;
   z++;
```

1. x, y, and z are potential loop counters

Example:

```
for (x < 6) {
   y++;
   if (y \% 2 = 0)
     X++;
   else
     x = x+2;
   z++;
```

1. x, y, and z are potential loop counters

2. Invariants: x'-x in [1,2] y'-y in [1,1] z'-z in [1,1]

Example:

```
for (x < 6) {
   y++;
   if (y % 2 = 0)
     X++;
   else
     x = x+2;
   z++;
```

1. x, y, and z are potential loop counters

2. Invariants: x'-x in [1,2] y'-y in [1,1] z'-z in [1,1]

3. Loop bound: 6 assuming $x \ge 0$ initially

Combination of multiple analyses:

- Slicing: eliminate code that is irrelevant for loop termination
- Value analysis: determine possible values of all variables in slice
- Invariant analysis: determine variables that do not change during loop execution
- 4. Loop bound = set of possible valuations of non-invariant variables

Program slicing is the computation of the set of programs statements, the program slice, that may affect the values at some point of interest, referred to as a **slicing criterion**.

Step 1: Slicing with slicing criterion (i <= INPUT)

```
int OUTPUT = 0;
int i = 1;
while (i <= INPUT) {
    OUTPUT += 2;
    i += 2;
}</pre>
```



```
int i = 1;
while (i <= INPUT) {
    i += 2;
}</pre>
```

Step 2: Value Analysis

Observation:

If the loop terminates, the program can only be in any particular state once.

→ Determine number of states the program can be in at the loop header.

```
int i = 1;
while (i <= INPUT) { | i in [1, 20], i % 2 = 1
```

Value Analysis: INPUT in [10, 20] (assumption)

Step 2: Value Analysis

Observation:

If the loop terminates, the program can only be in any particular state once.

→ Determine number of states the program can be in at the loop header.

```
int i = 1;
while (i <= INPUT) {
    i += 2;
}</pre>
```

Value Analysis: INPUT in [10, 20] (assumption) i in [1, 20], i % 2 = 1

- → 11 * 10 states
- → Loop bound 110!

Step 3: Invariant Analysis

Observation:

Value of INPUT is not completely known, but INPUT does not change during loop.

→ Determine variables that are invariant during loop.

```
int i = 1;
while (i <= INPUT) {
    i += 2;
}</pre>
```

Value Analysis: INPUT in [10, 20] (assumption) i in [1, 20], i % 2 = 1

Step 3: Invariant Analysis

Observation:

Value of INPUT is not completely known, but INPUT does not change during loop.

→ Determine variables that are invariant during loop.

```
int i = 1;
while (i <= INPUT) {
    i += 2;
}</pre>
```

Value Analysis: INPUT in [10, 20] (assumption) i in [1, 20], i % 2 = 1

- → INPUT is invariant!
- → Loop bound 10!

Reduction: Loop Bound Analysis to Value Analysis

Reduction: Loop Bound Analysis to Value Analysis

Reduction: Loop Bound Analysis to Value Analysis

Summary

• Interval Analysis:

A non-relational value analysis

- Widenings for termination in the presence of Infinite Ascending Chains
- Narrowings to recover precision
- Basic Approach to Loop Bound Analysis based on Value Analysis

Outlook

- Cache Abstractions
- Schedulability Analysis
- Cache-Related Preemption Delay
- Predictable Microarchitectures