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How to Compute the Least Fixed Point 

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

Fixed points:

A fixed point of a function f : D ! D is an element x 2 D

with x = f(x).

Example:

f : P({1, 2, 3, 4, 5}) ! P({1, 2, 3, 4, 5})
f(X) = {1, 2, 3} [X

{1, 2, 3}
{1, 2, 3, 4}

{1, 2, 3, 4, 5}

Least fixed point:

The least fixed point l, denoted lfp f , of a function f : D ! D

over a lattice (D,), is a fixed point of f , such that for every

fixed point x of f : l  x.

Kleene iteration:

?  f(?)  f

2
(?)  f

3
(?)  . . .

2. REFERENCES

Kleene Iteration: 

Why is this increasing? 
Will this reach the fixed point? 
    It will here: 

 But in general? 

start

1 3

x = 0

Pos(x < 100)

Neg(x < 100)

x = x+1

2
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Lattice has infinite ascending chains. 



Infinite Ascending Chains 

Fix(F)

lfp F
Properties of Complete Lattices 

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

2. REFERENCES

Properties of Complete Lattices 

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?
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Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

2. REFERENCES

...

F

F
F

start

1 3
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Pos(true)

Neg(true)

x = x+1

2

No! 

Think of an example of an 
infinite ascending chain. 



Ascending Chain Condition 

Examples!?:
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• The set of subsets of a given set (its powerset) ordered
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• The set of subsets of a given set (its powerset) ordered
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• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of
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ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)
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d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.
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x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

Fixed points:

A fixed point of a function f : D ! D is an element x 2 D

with x = f(x).

Example:

f : P({1, 2, 3, 4, 5}) ! P({1, 2, 3, 4, 5})
f(X) = {1, 2, 3} [X

{1, 2, 3}
{1, 2, 3, 4}

{1, 2, 3, 4, 5}

Least fixed point:

The least fixed point l, denoted lfp f , of a function f : D ! D

over a lattice (D,), is a fixed point of f , such that for every

fixed point x of f : l  x.

Kleene iteration:

?  f(?)  f

2
(?)  f

3
(?)  . . .

Ascending Chain Condition:

A partially-ordered set S satisfies the ascending chain condi-

tion if every strictly ascending sequence of elements is finite.

a1  a2  a3  · · ·  an  an+1  . . .

an = an+1 = an+2 . . .

2. REFERENCES

è Length of longest ascending chain determines 
 worst-case complexity of Kleene Iteration. 

Fix(F#)

lfp F#
Properties of Complete Lattices 

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

2. REFERENCES

Properties of Complete Lattices 

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

2. REFERENCES

F#

F#
F#

F#
F#

Theorem (Ascending Chain Condition): 
 
 
 
 
 

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

Fixed points:

A fixed point of a function f : D ! D is an element x 2 D

with x = f(x).

Example:

f : P({1, 2, 3, 4, 5}) ! P({1, 2, 3, 4, 5})
f(X) = {1, 2, 3} [X

{1, 2, 3}
{1, 2, 3, 4}

{1, 2, 3, 4, 5}

Least fixed point:

The least fixed point l, denoted lfp f , of a function f : D ! D

over a lattice (D,), is a fixed point of f , such that for every

fixed point x of f : l  x.

Kleene iteration:

?  f(?)  f

2
(?)  f

3
(?)  . . .

Ascending Chain Condition:

A partially-ordered set S satisfies the ascending chain condi-

tion if every strictly ascending sequence of elements is finite.

a1  a2  a3  · · ·  an  an+1  . . .

an = an+1 = an+2 . . .

Lemma 1 (Ascending Chain Condition).

Let (S,) be a complete lattice set that satisfies the as-

cending chain condition, and let f : S ! S be a monotone

function. Then, there is an n 2 N, such that

lfp f = f

n
(?).

Proof. By the ascending chain condition the sequence

?, f(?), f

2
(?), . . . must eventually stabilize. So for some

n, f

n
(?) is a fixed point of f . It is also the least fixed point:

We show by induction over n that f

m
(?)  lfpf . Clearly,

f

0
(?) = ?  lfpf . Then, our induction hypothesis is that

f

m
(?)  lfpf . By monotonicity, we also get f

m+1
(?) 

f(lfpf) = lfpf , which concludes the proof.



Ascending Chain Condition: Examples 

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

Fixed points:

A fixed point of a function f : D ! D is an element x 2 D

with x = f(x).

Example:

f : P({1, 2, 3, 4, 5}) ! P({1, 2, 3, 4, 5})
f(X) = {1, 2, 3} [X

{1, 2, 3}
{1, 2, 3, 4}

{1, 2, 3, 4, 5}

Least fixed point:

The least fixed point l, denoted lfp f , of a function f : D ! D

over a lattice (D,), is a fixed point of f , such that for every

fixed point x of f : l  x.

Kleene iteration:

?  f(?)  f

2
(?)  f

3
(?)  . . .

Ascending Chain Condition:

A partially-ordered set S satisfies the ascending chain condi-

tion if every strictly ascending sequence of elements is finite.

a1  a2  a3  · · ·  an  an+1  . . .

an = an+1 = an+2 . . .

2. REFERENCES

Examples:

1. D = 2{a,b,c} with the relation “⊆” :

a, b, c

a, b a, c b, c

a b c

43
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Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

2. REFERENCES

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

2. REFERENCES

Power set lattice 
Flat lattice 

How about total function space lattice? 
How about finite partially-ordered sets? 

à Ascending chain condition does not imply finite partially-ordered set! 



Recap: Abstract Interpretation 

¢  Semantics-based approach to program analysis 
¢  Framework to develop provably correct and terminating 

analyses  
 

Ingredients: 
¢  Concrete semantics: Formalizes meaning of a program 
¢  Abstract semantics 
¢  Both semantics defined as fixpoints of monotone 

functions over some domain 
¢  Relation between the two semantics establishing 

correctness 

✓ 

(✓) 



Abstract Semantics 

Similar to concrete semantics: 
¢  A complete lattice (L#, ≤) as the domain for 

abstract elements 
¢  A monotone function F# corresponding to the 

concrete function F 
¢  Then the abstract semantics is the least fixed 

point of F#, lfp F# 

If F# “correctly approximates” F,  
 then lfp F# “correctly approximates” lfp F. 



An Example Abstract Domain  
for Values of Variables 

... -2 -1 0 1 2 ...

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

2. REFERENCES

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.
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... {-2} {-1} {0} {1} {2} ...

{}

... {-2,-1} {-1,0} {0,1} {1,2} {2,3} ...

{…, -2, -1, 0, 1, 2, ...}

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z
•

F
A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}
Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

Fixed points:

A fixed point of a function f : D ! D is an element x 2 D

with x = f(x).

Example:

f : P({1, 2, 3, 4, 5}) ! P({1, 2, 3, 4, 5})
f(X) = {1, 2, 3} [X

{1, 2, 3}
{1, 2, 3, 4}

{1, 2, 3, 4, 5}

Least fixed point:

The least fixed point l, denoted lfp f , of a function f : D ! D

over a lattice (D,), is a fixed point of f , such that for every

fixed point x of f : l  x.

Kleene iteration:

?  f(?)  f

2
(?)  f

3
(?)  . . .

Ascending Chain Condition:

A partially-ordered set S satisfies the ascending chain condi-

tion if every strictly ascending sequence of elements is finite.

a1  a2  a3  · · ·  an  an+1  . . .

an = an+1 = an+2 . . .

(P(Z),✓)

(Z>
?,)

Fixpoint transfer theorem:

Local consistency:

Given: two lattices (L,) and (L

#
,#

), a monotone func-

tion � : L

# ! L, and two monotone functions F : L ! L,

F

# ! F

#
, with 8l# 2 L

#
: �(F

#
(l

#
)) � F (�(l

#
)). Then:

lfp F  �(lfp F

#
).

↵

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z
•

F
A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}
Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

Fixed points:

A fixed point of a function f : D ! D is an element x 2 D

with x = f(x).

Example:

f : P({1, 2, 3, 4, 5}) ! P({1, 2, 3, 4, 5})
f(X) = {1, 2, 3} [X

{1, 2, 3}
{1, 2, 3, 4}

{1, 2, 3, 4, 5}

Least fixed point:

The least fixed point l, denoted lfp f , of a function f : D ! D

over a lattice (D,), is a fixed point of f , such that for every

fixed point x of f : l  x.

Kleene iteration:

?  f(?)  f

2
(?)  f

3
(?)  . . .

Ascending Chain Condition:

A partially-ordered set S satisfies the ascending chain condi-

tion if every strictly ascending sequence of elements is finite.

a1  a2  a3  · · ·  an  an+1  . . .

an = an+1 = an+2 . . .

(P(Z),✓)

(Z>
?,)

Fixpoint transfer theorem:

Local consistency:

Given: two lattices (L,) and (L

#
,#

), a monotone func-

tion � : L

# ! L, and two monotone functions F : L ! L,

F

# ! F

#
, with 8l# 2 L

#
: �(F

#
(l

#
)) � F (�(l

#
)). Then:

lfp F  �(lfp F

#
).

↵

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

Fixed points:

A fixed point of a function f : D ! D is an element x 2 D

with x = f(x).

Example:

f : P({1, 2, 3, 4, 5}) ! P({1, 2, 3, 4, 5})
f(X) = {1, 2, 3} [X

{1, 2, 3}
{1, 2, 3, 4}

{1, 2, 3, 4, 5}

Least fixed point:

The least fixed point l, denoted lfp f , of a function f : D ! D

over a lattice (D,), is a fixed point of f , such that for every

fixed point x of f : l  x.

Kleene iteration:

?  f(?)  f

2
(?)  f

3
(?)  . . .

Ascending Chain Condition:

A partially-ordered set S satisfies the ascending chain condi-

tion if every strictly ascending sequence of elements is finite.

a1  a2  a3  · · ·  an  an+1  . . .

an = an+1 = an+2 . . .

(P(Z),✓)

(Z>
?,)

� : Z>
? ! P(Z)

�(>) := Z
�(?) := ;
�(x) := {x}

↵ : P(Z) ! Z>
?

↵(A) :=

8
><

>:

> : |A| � 2

x : A = {x}
? : A = ;

Fixpoint transfer theorem:

Local consistency:

Given: two lattices (L,) and (L

#
,#

), a monotone func-

tion � : L

# ! L, and two monotone functions F : L ! L,

F

# ! F

#
, with 8l# 2 L

#
: �(F

#
(l

#
)) � F (�(l

#
)). Then:

lfp F  �(lfp F

#
).

↵
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Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.
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Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.
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... {-2} {-1} {0} {1} {2} ...

{}

... {-2,-1} {-1,0} {0,1} {1,2} {2,3} ...

{…, -2, -1, 0, 1, 2, ...}

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z
•

F
A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}
Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

Fixed points:

A fixed point of a function f : D ! D is an element x 2 D

with x = f(x).

Example:

f : P({1, 2, 3, 4, 5}) ! P({1, 2, 3, 4, 5})
f(X) = {1, 2, 3} [X

{1, 2, 3}
{1, 2, 3, 4}

{1, 2, 3, 4, 5}

Least fixed point:

The least fixed point l, denoted lfp f , of a function f : D ! D

over a lattice (D,), is a fixed point of f , such that for every

fixed point x of f : l  x.

Kleene iteration:

?  f(?)  f

2
(?)  f

3
(?)  . . .

Ascending Chain Condition:

A partially-ordered set S satisfies the ascending chain condi-

tion if every strictly ascending sequence of elements is finite.

a1  a2  a3  · · ·  an  an+1  . . .

an = an+1 = an+2 . . .

(P(Z),✓)

(Z>
?,)

Fixpoint transfer theorem:

Local consistency:

Given: two lattices (L,) and (L

#
,#

), a monotone func-

tion � : L

# ! L, and two monotone functions F : L ! L,

F

# ! F

#
, with 8l# 2 L

#
: �(F

#
(l

#
)) � F (�(l

#
)). Then:

lfp F  �(lfp F

#
).

↵

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z
•

F
A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}
Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

Fixed points:

A fixed point of a function f : D ! D is an element x 2 D

with x = f(x).

Example:

f : P({1, 2, 3, 4, 5}) ! P({1, 2, 3, 4, 5})
f(X) = {1, 2, 3} [X

{1, 2, 3}
{1, 2, 3, 4}

{1, 2, 3, 4, 5}

Least fixed point:

The least fixed point l, denoted lfp f , of a function f : D ! D

over a lattice (D,), is a fixed point of f , such that for every

fixed point x of f : l  x.

Kleene iteration:

?  f(?)  f

2
(?)  f

3
(?)  . . .

Ascending Chain Condition:

A partially-ordered set S satisfies the ascending chain condi-

tion if every strictly ascending sequence of elements is finite.

a1  a2  a3  · · ·  an  an+1  . . .

an = an+1 = an+2 . . .

(P(Z),✓)

(Z>
?,)

Fixpoint transfer theorem:

Local consistency:

Given: two lattices (L,) and (L

#
,#

), a monotone func-

tion � : L

# ! L, and two monotone functions F : L ! L,

F

# ! F

#
, with 8l# 2 L

#
: �(F

#
(l

#
)) � F (�(l

#
)). Then:

lfp F  �(lfp F

#
).

↵

How to relate the two? 
 è Concretization function, specifying “meaning” of abstract values. 

 
 
 

 è Abstraction function: determines best representation concrete values. 
 

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

Fixed points:

A fixed point of a function f : D ! D is an element x 2 D

with x = f(x).

Example:

f : P({1, 2, 3, 4, 5}) ! P({1, 2, 3, 4, 5})
f(X) = {1, 2, 3} [X

{1, 2, 3}
{1, 2, 3, 4}

{1, 2, 3, 4, 5}

Least fixed point:

The least fixed point l, denoted lfp f , of a function f : D ! D

over a lattice (D,), is a fixed point of f , such that for every

fixed point x of f : l  x.

Kleene iteration:

?  f(?)  f

2
(?)  f

3
(?)  . . .

Ascending Chain Condition:

A partially-ordered set S satisfies the ascending chain condi-

tion if every strictly ascending sequence of elements is finite.

a1  a2  a3  · · ·  an  an+1  . . .

an = an+1 = an+2 . . .

(P(Z),✓)

(Z>
?,)

� : Z>
? ! P(Z)

�(>) := Z
�(?) := ;
�(x) := {x}

↵ : P(Z) ! Z>
?

↵(A) :=

8
><

>:

> : |A| � 2

x : A = {x}
? : A = ;

Fixpoint transfer theorem:

Local consistency:

Given: two lattices (L,) and (L

#
,#

), a monotone func-

tion � : L

# ! L, and two monotone functions F : L ! L,

F

# ! F

#
, with 8l# 2 L

#
: �(F

#
(l

#
)) � F (�(l

#
)). Then:

lfp F  �(lfp F

#
).

↵
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Relation between the Abstract and 
Concrete Domains 

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

Fixed points:

A fixed point of a function f : D ! D is an element x 2 D

with x = f(x).

Example:

f : P({1, 2, 3, 4, 5}) ! P({1, 2, 3, 4, 5})
f(X) = {1, 2, 3} [X

{1, 2, 3}
{1, 2, 3, 4}

{1, 2, 3, 4, 5}

Least fixed point:

The least fixed point l, denoted lfp f , of a function f : D ! D

over a lattice (D,), is a fixed point of f , such that for every

fixed point x of f : l  x.

Kleene iteration:

?  f(?)  f

2
(?)  f

3
(?)  . . .

Ascending Chain Condition:

A partially-ordered set S satisfies the ascending chain condi-

tion if every strictly ascending sequence of elements is finite.

a1  a2  a3  · · ·  an  an+1  . . .

an = an+1 = an+2 . . .

(P(Z),✓)

(Z>
?,)

� : Z>
? ! P(Z)

�(>) := Z
�(?) := ;
�(x) := {x}



Relation between the Abstract and 
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Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =
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• > = S =

S
S.

Complete lattice (D,)

F
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(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

Fixed points:

A fixed point of a function f : D ! D is an element x 2 D

with x = f(x).

Example:

f : P({1, 2, 3, 4, 5}) ! P({1, 2, 3, 4, 5})
f(X) = {1, 2, 3} [X

{1, 2, 3}
{1, 2, 3, 4}

{1, 2, 3, 4, 5}

Least fixed point:

The least fixed point l, denoted lfp f , of a function f : D ! D

over a lattice (D,), is a fixed point of f , such that for every

fixed point x of f : l  x.

Kleene iteration:

?  f(?)  f

2
(?)  f

3
(?)  . . .

Ascending Chain Condition:

A partially-ordered set S satisfies the ascending chain condi-

tion if every strictly ascending sequence of elements is finite.

a1  a2  a3  · · ·  an  an+1  . . .

an = an+1 = an+2 . . .

(P(Z),✓)

(Z>
?,)

� : Z>
? ! P(Z)

�(>) := Z
�(?) := ;
�(x) := {x}

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

Fixed points:

A fixed point of a function f : D ! D is an element x 2 D

with x = f(x).

Example:

f : P({1, 2, 3, 4, 5}) ! P({1, 2, 3, 4, 5})
f(X) = {1, 2, 3} [X

{1, 2, 3}
{1, 2, 3, 4}

{1, 2, 3, 4, 5}

Least fixed point:

The least fixed point l, denoted lfp f , of a function f : D ! D

over a lattice (D,), is a fixed point of f , such that for every

fixed point x of f : l  x.

Kleene iteration:

?  f(?)  f

2
(?)  f

3
(?)  . . .

Ascending Chain Condition:

A partially-ordered set S satisfies the ascending chain condi-

tion if every strictly ascending sequence of elements is finite.

a1  a2  a3  · · ·  an  an+1  . . .

an = an+1 = an+2 . . .

(P(Z),✓)

(Z>
?,)

� : Z>
? ! P(Z)

�(>) := Z
�(?) := ;
�(x) := {x}
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• The set of subsets of a given set (its powerset) ordered
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• The set of subsets of a given set (its powerset) ordered
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F
A, if
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Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is
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“join”:

F
A =

S
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“meet”:
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A =

T
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“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:
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Every complete lattice (D,) has
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D.

Fixed points:

A fixed point of a function f : D ! D is an element x 2 D

with x = f(x).
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Least fixed point:

The least fixed point l, denoted lfp f , of a function f : D ! D

over a lattice (D,), is a fixed point of f , such that for every

fixed point x of f : l  x.

Kleene iteration:
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Ascending Chain Condition:
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an = an+1 = an+2 . . .
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�(>) := Z
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• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of
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• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:
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Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is
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“join”:

F
A =

S
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A
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with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

Fixed points:

A fixed point of a function f : D ! D is an element x 2 D

with x = f(x).

Example:

f : P({1, 2, 3, 4, 5}) ! P({1, 2, 3, 4, 5})
f(X) = {1, 2, 3} [X
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Least fixed point:

The least fixed point l, denoted lfp f , of a function f : D ! D

over a lattice (D,), is a fixed point of f , such that for every

fixed point x of f : l  x.

Kleene iteration:

?  f(?)  f
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(?)  f

3
(?)  . . .

Ascending Chain Condition:

A partially-ordered set S satisfies the ascending chain condi-

tion if every strictly ascending sequence of elements is finite.

a1  a2  a3  · · ·  an  an+1  . . .

an = an+1 = an+2 . . .
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Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L
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For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d
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• ? = ; =
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(X ! L,)
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Every complete lattice (D,) has
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• a greatest element (top element): > =

F
D.

Fixed points:

A fixed point of a function f : D ! D is an element x 2 D

with x = f(x).

Example:

f : P({1, 2, 3, 4, 5}) ! P({1, 2, 3, 4, 5})
f(X) = {1, 2, 3} [X
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Least fixed point:

The least fixed point l, denoted lfp f , of a function f : D ! D

over a lattice (D,), is a fixed point of f , such that for every

fixed point x of f : l  x.

Kleene iteration:

?  f(?)  f

2
(?)  f

3
(?)  . . .

Ascending Chain Condition:

A partially-ordered set S satisfies the ascending chain condi-

tion if every strictly ascending sequence of elements is finite.

a1  a2  a3  · · ·  an  an+1  . . .

an = an+1 = an+2 . . .

(P(Z),✓)

(Z>
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�(>) := Z
�(?) := ;
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• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:
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“join”:
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For any set S and lattice (L,L), the total function space
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#
)). Then:

lfp F  �(lfp F

#
).

↵
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↵ : P(Z) ! Z>
?

↵(A) :=

8
><

>:

> : |A| � 2

x : A = {x}
? : A = ;

Fixpoint transfer theorem:

Local consistency:

Given: two lattices (L,) and (L

#
,#

), a monotone func-

tion � : L

# ! L, and two monotone functions F : L ! L,

F

# ! F

#
, with 8l# 2 L

#
: �(F

#
(l

#
)) � F (�(l

#
)). Then:

lfp F  �(lfp F

#
).

↵
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Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

Fixed points:

A fixed point of a function f : D ! D is an element x 2 D

with x = f(x).

Example:

f : P({1, 2, 3, 4, 5}) ! P({1, 2, 3, 4, 5})
f(X) = {1, 2, 3} [X

{1, 2, 3}
{1, 2, 3, 4}

{1, 2, 3, 4, 5}

Least fixed point:

The least fixed point l, denoted lfp f , of a function f : D ! D

over a lattice (D,), is a fixed point of f , such that for every

fixed point x of f : l  x.

Kleene iteration:

?  f(?)  f

2
(?)  f

3
(?)  . . .

Ascending Chain Condition:

A partially-ordered set S satisfies the ascending chain condi-

tion if every strictly ascending sequence of elements is finite.

a1  a2  a3  · · ·  an  an+1  . . .

an = an+1 = an+2 . . .

(P(Z),✓)

(Z>
?,)

� : Z>
? ! P(Z)

�(>) := Z
�(?) := ;
�(x) := {x}

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

Fixed points:

A fixed point of a function f : D ! D is an element x 2 D

with x = f(x).

Example:

f : P({1, 2, 3, 4, 5}) ! P({1, 2, 3, 4, 5})
f(X) = {1, 2, 3} [X

{1, 2, 3}
{1, 2, 3, 4}

{1, 2, 3, 4, 5}

Least fixed point:

The least fixed point l, denoted lfp f , of a function f : D ! D

over a lattice (D,), is a fixed point of f , such that for every

fixed point x of f : l  x.

Kleene iteration:

?  f(?)  f

2
(?)  f

3
(?)  . . .

Ascending Chain Condition:

A partially-ordered set S satisfies the ascending chain condi-

tion if every strictly ascending sequence of elements is finite.

a1  a2  a3  · · ·  an  an+1  . . .

an = an+1 = an+2 . . .

(P(Z),✓)

(Z>
?,)

� : Z>
? ! P(Z)

�(>) := Z
�(?) := ;
�(x) := {x}

1.  Are these functions monotone? 
2.  Should they be? 
3.  What is the meaning of the partial order in the 

abstract domain? 
4.  What if we first abstract and the concretize? 



How to Compute in the Abstract Domain 
Example: Multiplication on Flat Lattice 

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.
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Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.
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Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

2. REFERENCES

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.
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How to Compute in the Abstract Domain 
Example: Multiplication on Flat Lattice 

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

2. REFERENCES

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.
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Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

2. REFERENCES

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.
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How to Compute in the Abstract Domain: 
Correctness Conditions 

Correctness Condition: 

Correct by construction 
(if concretization and abstraction have certain properties): 

≤

Idea for Correctness: Abstract Interpretation
Cousot, Cousot 1977

Establish a description relation ∆ between the concrete values and
their descriptions with:

x∆ a1 ∧ a1 " a2 ==⇒ x∆ a2

Concretization: γ a = {x | x∆ a}

// returns the set of described values

107

Idea for Correctness: Abstract Interpretation
Cousot, Cousot 1977

Establish a description relation ∆ between the concrete values and
their descriptions with:

x∆ a1 ∧ a1 " a2 ==⇒ x∆ a2

Concretization: γ a = {x | x∆ a}

// returns the set of described values

107

Abstract Domain

Concrete Domain op

op#Idea for Correctness: Abstract Interpretation
Cousot, Cousot 1977

Establish a description relation ∆ between the concrete values and
their descriptions with:

x∆ a1 ∧ a1 " a2 ==⇒ x∆ a2

Concretization: γ a = {x | x∆ a}

// returns the set of described values

107

Abstract Domain

Concrete Domain op

op#

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

Fixed points:

A fixed point of a function f : D ! D is an element x 2 D

with x = f(x).

Example:

f : P({1, 2, 3, 4, 5}) ! P({1, 2, 3, 4, 5})
f(X) = {1, 2, 3} [X

{1, 2, 3}
{1, 2, 3, 4}

{1, 2, 3, 4, 5}

Least fixed point:

The least fixed point l, denoted lfp f , of a function f : D ! D

over a lattice (D,), is a fixed point of f , such that for every

fixed point x of f : l  x.

Kleene iteration:

?  f(?)  f

2
(?)  f

3
(?)  . . .

Ascending Chain Condition:

A partially-ordered set S satisfies the ascending chain condi-

tion if every strictly ascending sequence of elements is finite.

a1  a2  a3  · · ·  an  an+1  . . .

an = an+1 = an+2 . . .

↵
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How to Compute in the Abstract Domain 
Example: Multiplication on Flat Lattice 

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.
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How to Compute in the Abstract Domain 
Example: Multiplication on Flat Lattice 

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space
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Abstract Domain

Concrete Domain op

op#

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

Fixed points:

A fixed point of a function f : D ! D is an element x 2 D

with x = f(x).

Example:

f : P({1, 2, 3, 4, 5}) ! P({1, 2, 3, 4, 5})
f(X) = {1, 2, 3} [X

{1, 2, 3}
{1, 2, 3, 4}

{1, 2, 3, 4, 5}

Least fixed point:

The least fixed point l, denoted lfp f , of a function f : D ! D

over a lattice (D,), is a fixed point of f , such that for every

fixed point x of f : l  x.

Kleene iteration:

?  f(?)  f

2
(?)  f

3
(?)  . . .

Ascending Chain Condition:

A partially-ordered set S satisfies the ascending chain condi-

tion if every strictly ascending sequence of elements is finite.

a1  a2  a3  · · ·  an  an+1  . . .

an = an+1 = an+2 . . .

↵
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Proof. By the ascending chain condition the sequence

?, f(?), f2
(?), . . . must eventually stabilize. So for some

n, f

n
(?) is a fixed point of f . It is also the least fixed point:

We show by induction over n that f

m
(?)  lfpf . Clearly,

f

0
(?) = ?  lfpf . Then, our induction hypothesis is that

f

m
(?)  lfpf . By monotonicity, we also get f

m+1
(?) 

f(lfpf) = lfpf , which concludes the proof.

(P(Z),✓)

(Z>
?,)

� : Z>
? ! P(Z)

�(>) := Z
�(?) := ;
�(x) := {x}

↵ : P(Z)! Z>
?

↵(A) :=

8
><

>:

> : |A| � 2

x : A = {x}
? : A = ;

[[statement]] ✓ States⇥ States

[[statement]] : P(States)! P(States)

[[statement]](S) := {s0 | 9s 2 S : (s, s

0
) 2 [[statement]]}

[[statement]]

#

{0}

0

{a} {b} {a ⇤ b}

Sets of concrete states:

States

States = (Vars! int)⇥ (N! int)

States = (Vars! Z)⇥ (N! Z)

Definition 1 (Galois connection).
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Galois connections: Properties 
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Abstracting Sets of Concrete States 
Recap: Concrete States 

Concrete states are not just sets of values... 

Concrete states consist of variables and memory: 

1. INTRODUCTION

WCETH(P ) := max

i2Inputs
max

h2States(H)
ETH(P, i, h)

maximize c

T
x

subject to Ax  b

and x � 0

What is a CFG?

CFG G = (V,E, start, labeling)

start 2 V

E ✓ V ⇥ V

labeling : E ! Statement

States:

s = (⇢, µ)

⇢ : Vars ! int

µ : N ! int

Transition system:

⌧ = (⌃, I, t)

I ✓ ⌃

t ✓ ⌃⇥ ⌃

⌃ = ProgramPoint⇥ Valuation

Valuation = Vars ! N

[[x := x+ 1]] := {(v, v[x 7! (v(x) + 1)]) | v 2 Valuation}
[[x < y?]] := {(v, v) | v 2 Valuation ^ (v(x) < v(y))}

t =

[

(p,q)2Edge

�
((p, v), (q, v

0
)) | (v, v0) 2 [[s(p, q)]]
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Values of Variables 

Contents of Memory 
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Proof. By the ascending chain condition the sequence

?, f(?), f

2
(?), . . . must eventually stabilize. So for some

n, f

n
(?) is a fixed point of f . It is also the least fixed point:

We show by induction over n that f

m
(?)  lfpf . Clearly,

f

0
(?) = ?  lfpf . Then, our induction hypothesis is that

f

m
(?)  lfpf . By monotonicity, we also get f

m+1
(?) 

f(lfpf) = lfpf , which concludes the proof.
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[[statement]] ✓ States⇥ States

[[statement]] : P(States) ! P(States)
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0
) 2 [[statement]]}

Sets of concrete states:
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Fixpoint transfer theorem:

Local consistency:

Let (L,) and (L

#
,#

) be two lattices, � : L

# ! L a

monotone function, and F : L ! L and F

# ! F

#
two

monotone functions, with

8l# 2 L

#
: �(F

#
(l

#
)) � F (�(l

#
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Then:
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#
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Abstracting Sets of Concrete States 
Recap: Concrete States 

Reachability semantics is defined on sets of states: 
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Relation between  
Concrete Domain and Abstract Domain 
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Concrete domain! Abstract domain? 



Relation between  
Concrete Domain and Abstract Domain 
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States

States = (Vars! int)⇥ (N! int)

States = (Vars! Z)⇥ (N! Z)
P(States) = P((Vars! Z)⇥ (N! Z))

Abstract states:

\
States = Vars! Z>

?

\
States = (Vars! Z>

)?

Concretization:

�A,C :

\
States! P(States)

�(ba) := {(v,m) 2 States | 8x 2 Vars : v(x) 2 �(ba(x))}

Abstraction:

↵C,A : P(States)! \
States

↵(C) := �x 2 Vars.↵({v(x) 2 Z | (v,m) 2 C})

·
·

·
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(M,v).

Abstract Intermediate States

\
PowerSetStates = Vars! P(Z)

Concretization:

�I,C :

\
PowerSetStates! P(States)

�I,C(bc) := {(v,m) 2 States | 8x 2 Vars : v(x) 2 bc(x)}

Abstraction:

↵C,I : P(States)! \
PowerSetStates

↵C,I(C) := �x 2 Vars.{v(x) 2 Z | (v,m) 2 C}

Relation of Intermediate States to Abstract States Con-

cretization:

�A,I :

\
States! \

PowerSetStates

�(ba) := �x 2 Vars.�(ba(x))

Abstraction:

↵I,A :

\
PowerSetStates! \

States

↵(bc) := �x 2 Vars.↵(c(x))

Relation of Concrete to Abstract: Concretization:

�A,C :

\
States! P(States)

�A,C := �I,C � �A,I

Abstraction:

↵C,A : P(States)! \
States

↵C,A := ↵I,A � ↵C,I

Definition 1 (Galois connection).

Let (L, ) and (M , v) be partially ordered sets and ↵ 2
L!M , � 2M ! L. We call (L,) ���! ���↵

�
(M,v) a Galois

connection if ↵ and � are monotone functions and

l  �(↵(l))

↵(�(m)) v m

for all l 2 L and m 2M .

Fixpoint transfer theorem:

Local consistency:

Let (L,) and (L

#
,#

) be two lattices, � : L

# ! L a

Galois connections 
can be composed to 
obtain new Galois 
connections. 

Proof. By the ascending chain condition the sequence

?, f(?), f2
(?), . . . must eventually stabilize. So for some

n, f

n
(?) is a fixed point of f . It is also the least fixed point:

We show by induction over n that f

m
(?)  lfpf . Clearly,

f

0
(?) = ?  lfpf . Then, our induction hypothesis is that

f

m
(?)  lfpf . By monotonicity, we also get f

m+1
(?) 

f(lfpf) = lfpf , which concludes the proof.

(P(Z),✓)

(Z>
?,)

� : Z>
? ! P(Z)

�(>) := Z
�(?) := ;
�(x) := {x}

↵ : P(Z)! Z>
?

↵(A) :=

8
><
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> : |A| � 2

x : A = {x}
? : A = ;

[[statement]] ✓ States⇥ States

[[statement]] : P(States)! P(States)

[[statement]](S) := {s0 | 9s 2 S : (s, s

0
) 2 [[statement]]}

[[statement]]

#

{0}

0

{a} {b} {a ⇤ b}

Sets of concrete states:

States

States = (Vars! int)⇥ (N! int)

States = (Vars! Z)⇥ (N! Z)
P(States) = P((Vars! Z)⇥ (N! Z))

Abstract states:

\
States = Vars! Z>

?

\
States = (Vars! Z>
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Definition 1 (Galois connection).

Let (L, ) and (M , v) be partially ordered sets and ↵ 2
L!M , � 2M ! L. We call (L,) ���! ���↵

�
(M,v) a Galois

connection if ↵ and � are monotone functions and
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
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Fixpoint transfer theorem:

Local consistency:

Let (L,) and (L

#
,#

) be two lattices, � : L

# ! L a

monotone function, and F : L ! L and F

# ! F

#
two

monotone functions, with

8l# 2 L

#
: �(F

#
(l

#
)) � F (�(l

#
)).

Then:

lfp F  �(lfp F

#
).

↵
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Proof. By the ascending chain condition the sequence
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We show by induction over n that f
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(?)  lfpf . Clearly,
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0
(?) = ?  lfpf . Then, our induction hypothesis is that

f

m
(?)  lfpf . By monotonicity, we also get f

m+1
(?) 

f(lfpf) = lfpf , which concludes the proof.

(P(Z),✓)

(Z>
?,)

� : Z>
? ! P(Z)

�(>) := Z
�(?) := ;
�(x) := {x}

↵ : P(Z)! Z>
?

↵(A) :=

8
><

>:

> : |A| � 2

x : A = {x}
? : A = ;

[[statement]] ✓ States⇥ States

[[statement]] : P(States)! P(States)

[[statement]](S) := {s0 | 9s 2 S : (s, s

0
) 2 [[statement]]}

[[statement]]

#

{0}

0

{a} {b} {a ⇤ b}

[[statement]] ✓ \
States⇥ \

States

[[R = e]]

#
(ba) := ba[R 7! [[e]]

#
(ba)]

[[R = M [e]]]

#
(ba) := ba[R 7! >]

[[M [e1] = e2]]
#
(ba) := ba

[[Pos(e)]]

#
(ba) := ba

[[Neg(e)]]

#
(ba) := ba

Evaluation of Expressions:

[[x]]

#
(ba) := ba(x) if x 2 Vars

[[e1 ⌦ e2]]
#
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#
(ba)⌦#

[[e2]]
#
(ba)

. . .

Sets of concrete states:

States

States = (Vars! int)⇥ (N! int)

States = (Vars! Z)⇥ (N! Z)
P(States) = P((Vars! Z)⇥ (N! Z))

Abstract states:

\
States = Vars! Z>

?

\
States = (Vars! Z>
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Concretization:

�A,C :

\
States! P(States)

�(ba) := {(v,m) 2 States | 8x 2 Vars : v(x) 2 �(ba(x))}

Abstraction:

↵C,A : P(States)! \
States

↵(C) := �x 2 Vars.↵({v(x) 2 Z | (v,m) 2 C})

Abstract Intermediate States

\
PowerSetStates = Vars! P(Z)

Concretization:

�I,C :

\
PowerSetStates! P(States)

�I,C(bc) := {(v,m) 2 States | 8x 2 Vars : v(x) 2 bc(x)}

Abstraction:

↵C,I : P(States)! \
PowerSetStates

↵C,I(C) := �x 2 Vars.{v(x) 2 Z | (v,m) 2 C}

Relation of Intermediate States to Abstract States Con-

cretization:

�A,I :

\
States! \

PowerSetStates

�(ba) := �x 2 Vars.�(ba(x))

Abstraction:

↵I,A :

\
PowerSetStates! \

States

↵(bc) := �x 2 Vars.↵(c(x))

Relation of Concrete to Abstract: Concretization:

�A,C :

\
States! P(States)

�A,C := �I,C � �A,I

Abstraction:

↵C,A : P(States)! \
States

↵C,A := ↵I,A � ↵C,I

Definition 1 (Galois connection).

Let (L, ) and (M , v) be partially ordered sets and ↵ 2
L!M , � 2M ! L. We call (L,) ���! ���↵

�
(M,v) a Galois

connection if ↵ and � are monotone functions and

l  �(↵(l))

↵(�(m)) v m

for all l 2 L and m 2M .

Fixpoint transfer theorem:

Local consistency:

Let (L,) and (L

#
,#

) be two lattices, � : L

# ! L a
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Proof. By the ascending chain condition the sequence

?, f(?), f2
(?), . . . must eventually stabilize. So for some

n, f

n
(?) is a fixed point of f . It is also the least fixed point:

We show by induction over n that f

m
(?)  lfpf . Clearly,

f

0
(?) = ?  lfpf . Then, our induction hypothesis is that

f

m
(?)  lfpf . By monotonicity, we also get f

m+1
(?) 

f(lfpf) = lfpf , which concludes the proof.

(P(Z),✓)

(Z>
?,)

� : Z>
? ! P(Z)

�(>) := Z
�(?) := ;
�(x) := {x}

↵ : P(Z)! Z>
?

↵(A) :=

8
><

>:

> : |A| � 2

x : A = {x}
? : A = ;

[[statement]] ✓ States⇥ States

[[statement]] : P(States)! P(States)

[[statement]](S) := {s0 | 9s 2 S : (s, s

0
) 2 [[statement]]}

[[statement]]

#

{0}

0

{a} {b} {a ⇤ b}

[[statement]] ✓ \
States⇥ \

States

[[R = e]]

#
(ba) := ba[R 7! [[e]]

#
(ba)]

[[R = M [e]]]

#
(ba) := ba[R 7! >]

[[M [e1] = e2]]
#
(ba) := ba

[[Pos(e)]]

#
(ba) := ba

[[Neg(e)]]

#
(ba) := ba

Evaluation of Expressions:

[[x]]

#
(ba) := ba(x) if x 2 Vars

[[e1 ⌦ e2]]
#
(ba) := [[e1]]

#
(ba)⌦#

[[e2]]
#
(ba)

. . .

Sets of concrete states:

States

States = (Vars! int)⇥ (N! int)

States = (Vars! Z)⇥ (N! Z)
P(States) = P((Vars! Z)⇥ (N! Z))

Abstract states:

\
States = Vars! Z>

?

\
States = (Vars! Z>

)?

Concretization:

�A,C :

\
States! P(States)

�(ba) := {(v,m) 2 States | 8x 2 Vars : v(x) 2 �(ba(x))}

Abstraction:

↵C,A : P(States)! \
States

↵(C) := �x 2 Vars.↵({v(x) 2 Z | (v,m) 2 C})

Abstract Intermediate States

\
PowerSetStates = Vars! P(Z)

Concretization:

�I,C :

\
PowerSetStates! P(States)

�I,C(bc) := {(v,m) 2 States | 8x 2 Vars : v(x) 2 bc(x)}

Abstraction:

↵C,I : P(States)! \
PowerSetStates

↵C,I(C) := �x 2 Vars.{v(x) 2 Z | (v,m) 2 C}

Relation of Intermediate States to Abstract States Con-

cretization:

�A,I :

\
States! \

PowerSetStates

�(ba) := �x 2 Vars.�(ba(x))

Abstraction:

↵I,A :

\
PowerSetStates! \

States

↵(bc) := �x 2 Vars.↵(c(x))

Relation of Concrete to Abstract: Concretization:

�A,C :

\
States! P(States)

�A,C := �I,C � �A,I

Abstraction:

↵C,A : P(States)! \
States

↵C,A := ↵I,A � ↵C,I

Definition 1 (Galois connection).

Let (L, ) and (M , v) be partially ordered sets and ↵ 2
L!M , � 2M ! L. We call (L,) ���! ���↵

�
(M,v) a Galois

connection if ↵ and � are monotone functions and

l  �(↵(l))

↵(�(m)) v m

for all l 2 L and m 2M .

Fixpoint transfer theorem:

Local consistency:

Let (L,) and (L

#
,#

) be two lattices, � : L

# ! L a

Can this be 
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Proof. By the ascending chain condition the sequence

?, f(?), f2
(?), . . . must eventually stabilize. So for some

n, f

n
(?) is a fixed point of f . It is also the least fixed point:

We show by induction over n that f

m
(?)  lfpf . Clearly,

f

0
(?) = ?  lfpf . Then, our induction hypothesis is that

f

m
(?)  lfpf . By monotonicity, we also get f

m+1
(?) 

f(lfpf) = lfpf , which concludes the proof.

(P(Z),✓)

(Z>
?,)

� : Z>
? ! P(Z)

�(>) := Z
�(?) := ;
�(x) := {x}

↵ : P(Z)! Z>
?

↵(A) :=

8
><

>:

> : |A| � 2

x : A = {x}
? : A = ;

[[statement]] ✓ States⇥ States

[[statement]] : P(States)! P(States)

[[statement]](S) := {s0 | 9s 2 S : (s, s

0
) 2 [[statement]]}

[[statement]]

#

{0}

0

{a} {b} {a ⇤ b}

[[statement]] ✓ \
States⇥ \

States

[[R = e]]

#
(ba) := ba[R 7! [[e]]

#
(ba)]

[[R = M [e]]]

#
(ba) := ba[R 7! >]

[[M [e1] = e2]]
#
(ba) := ba

[[Pos(e)]]

#
(ba) := ba

[[Neg(e)]]

#
(ba) := ba

Evaluation of Expressions:

[[x]]

#
(ba) := ba(x) if x 2 Vars

[[e1 ⌦ e2]]
#
(ba) := [[e1]]

#
(ba)⌦#

[[e2]]
#
(ba)

. . .

Sets of concrete states:

States

States = (Vars! int)⇥ (N! int)

States = (Vars! Z)⇥ (N! Z)
P(States) = P((Vars! Z)⇥ (N! Z))

Abstract states:

\
States = Vars! Z>

?

\
States = (Vars! Z>

)?

Concretization:

�A,C :

\
States! P(States)

�(ba) := {(v,m) 2 States | 8x 2 Vars : v(x) 2 �(ba(x))}

Abstraction:

↵C,A : P(States)! \
States

↵(C) := �x 2 Vars.↵({v(x) 2 Z | (v,m) 2 C})

Abstract Intermediate States

\
PowerSetStates = Vars! P(Z)

Concretization:

�I,C :

\
PowerSetStates! P(States)

�I,C(bc) := {(v,m) 2 States | 8x 2 Vars : v(x) 2 bc(x)}

Abstraction:

↵C,I : P(States)! \
PowerSetStates

↵C,I(C) := �x 2 Vars.{v(x) 2 Z | (v,m) 2 C}

Relation of Intermediate States to Abstract States Con-

cretization:

�A,I :

\
States! \

PowerSetStates

�(ba) := �x 2 Vars.�(ba(x))

Abstraction:

↵I,A :

\
PowerSetStates! \

States

↵(bc) := �x 2 Vars.↵(c(x))

Relation of Concrete to Abstract: Concretization:

�A,C :

\
States! P(States)

�A,C := �I,C � �A,I

Abstraction:

↵C,A : P(States)! \
States

↵C,A := ↵I,A � ↵C,I

Definition 1 (Galois connection).

Let (L, ) and (M , v) be partially ordered sets and ↵ 2
L!M , � 2M ! L. We call (L,) ���! ���↵

�
(M,v) a Galois

connection if ↵ and � are monotone functions and

l  �(↵(l))

↵(�(m)) v m

for all l 2 L and m 2M .

Fixpoint transfer theorem:

Local consistency:

Let (L,) and (L

#
,#

) be two lattices, � : L

# ! L a

Can this be 
done better? 

Idea for Correctness: Abstract Interpretation
Cousot, Cousot 1977

Establish a description relation ∆ between the concrete values and
their descriptions with:

x∆ a1 ∧ a1 " a2 ==⇒ x∆ a2

Concretization: γ a = {x | x∆ a}

// returns the set of described values

107

Abstract Domain

Concrete Domain

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

Fixed points:

A fixed point of a function f : D ! D is an element x 2 D

with x = f(x).

Example:

f : P({1, 2, 3, 4, 5}) ! P({1, 2, 3, 4, 5})
f(X) = {1, 2, 3} [X

{1, 2, 3}
{1, 2, 3, 4}

{1, 2, 3, 4, 5}

Least fixed point:

The least fixed point l, denoted lfp f , of a function f : D ! D

over a lattice (D,), is a fixed point of f , such that for every

fixed point x of f : l  x.

Kleene iteration:

?  f(?)  f

2
(?)  f

3
(?)  . . .

Ascending Chain Condition:

A partially-ordered set S satisfies the ascending chain condi-

tion if every strictly ascending sequence of elements is finite.

a1  a2  a3  · · ·  an  an+1  . . .

an = an+1 = an+2 . . .

↵
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Proof. By the ascending chain condition the sequence

?, f(?), f

2
(?), . . . must eventually stabilize. So for some

n, f

n
(?) is a fixed point of f . It is also the least fixed point:

We show by induction over n that f

m
(?)  lfpf . Clearly,

f

0
(?) = ?  lfpf . Then, our induction hypothesis is that

f

m
(?)  lfpf . By monotonicity, we also get f

m+1
(?) 

f(lfpf) = lfpf , which concludes the proof.

(P(Z),✓)

(Z>
?,)

� : Z>
? ! P(Z)

�(>) := Z
�(?) := ;
�(x) := {x}

↵ : P(Z) ! Z>
?

↵(A) :=

8
><

>:

> : |A| � 2

x : A = {x}
? : A = ;

[[statement]] ✓ States⇥ States

[[statement]] : P(States) ! P(States)

[[statement]](S) := {s0 | 9s 2 S : (s, s

0
) 2 [[statement]]}

Sets of concrete states:

States

States = (Vars ! int)⇥ (N ! int)

States = (Vars ! Z)⇥ (N ! Z)

Fixpoint transfer theorem:

Local consistency:

Let (L,) and (L

#
,#

) be two lattices, � : L

# ! L a

monotone function, and F : L ! L and F

# ! F

#
two

monotone functions, with

8l# 2 L

#
: �(F

#
(l

#
)) � F (�(l

#
)).

Then:

lfp F  �(lfp F

#
).

↵

2. REFERENCES

Proof. By the ascending chain condition the sequence

?, f(?), f

2
(?), . . . must eventually stabilize. So for some

n, f

n
(?) is a fixed point of f . It is also the least fixed point:

We show by induction over n that f

m
(?)  lfpf . Clearly,

f

0
(?) = ?  lfpf . Then, our induction hypothesis is that

f

m
(?)  lfpf . By monotonicity, we also get f

m+1
(?) 

f(lfpf) = lfpf , which concludes the proof.

(P(Z),✓)

(Z>
?,)

� : Z>
? ! P(Z)

�(>) := Z
�(?) := ;
�(x) := {x}

↵ : P(Z) ! Z>
?

↵(A) :=

8
><

>:

> : |A| � 2

x : A = {x}
? : A = ;

[[statement]] ✓ States⇥ States

[[statement]] : P(States) ! P(States)

[[statement]](S) := {s0 | 9s 2 S : (s, s

0
) 2 [[statement]]}

[[statement]]

#
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Fixpoint transfer theorem:

Local consistency:

Let (L,) and (L

#
,#
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# ! L a
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Concrete Domain
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f

m
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m+1
(?) 

f(lfpf) = lfpf , which concludes the proof.
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Meaning of Expressions 

Evaluation of expressions is as expected: 

Proof. By the ascending chain condition the sequence

?, f(?), f2
(?), . . . must eventually stabilize. So for some

n, f

n
(?) is a fixed point of f . It is also the least fixed point:

We show by induction over n that f

m
(?)  lfpf . Clearly,

f

0
(?) = ?  lfpf . Then, our induction hypothesis is that

f

m
(?)  lfpf . By monotonicity, we also get f

m+1
(?) 

f(lfpf) = lfpf , which concludes the proof.

(P(Z),✓)

(Z>
?,)

� : Z>
? ! P(Z)

�(>) := Z
�(?) := ;
�(x) := {x}

↵ : P(Z)! Z>
?

↵(A) :=

8
><

>:

> : |A| � 2

x : A = {x}
? : A = ;

[[statement]] ✓ States⇥ States

[[statement]] : P(States)! P(States)

[[statement]](S) := {s0 | 9s 2 S : (s, s

0
) 2 [[statement]]}

[[statement]]

#

{0}

0

{a} {b} {a ⇤ b}

[[statement]] ✓ \
States⇥ \

States

[[R = e]]

#
(ba) := ba[R 7! [[e]]

#
(ba)]

[[R = M [e]]]

#
(ba) := ba[R 7! >]

[[M [e1] = e2]]
#
(ba) := ba

[[Pos(e)]]

#
(ba) := ba

[[Neg(e)]]

#
(ba) := ba

Evaluation of Expressions:

[[x]]

#
(ba) := ba(x) if x 2 Vars

[[e1 op e2]]
#
(ba) := [[e1]]

#
(ba) op# [[e2]]

#
(ba)

. . .

Sets of concrete states:

States

States = (Vars! int)⇥ (N! int)

States = (Vars! Z)⇥ (N! Z)
P(States) = P((Vars! Z)⇥ (N! Z))

Abstract states:

\
States = Vars! Z>

?

\
States = (Vars! Z>

)?

Concretization:

�A,C :

\
States! P(States)

�(ba) := {(v,m) 2 States | 8x 2 Vars : v(x) 2 �(ba(x))}

Abstraction:

↵C,A : P(States)! \
States

↵(C) := �x 2 Vars.↵({v(x) 2 Z | (v,m) 2 C})

Abstract Intermediate States

\
PowerSetStates = Vars! P(Z)

Concretization:

�I,C :

\
PowerSetStates! P(States)

�I,C(bc) := {(v,m) 2 States | 8x 2 Vars : v(x) 2 bc(x)}
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PowerSetStates
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cretization:
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\
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Abstraction:
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↵C,A := ↵I,A � ↵C,I

Definition 1 (Galois connection).

Let (L, ) and (M , v) be partially ordered sets and ↵ 2
L!M , � 2M ! L. We call (L,) ���! ���↵

�
(M,v) a Galois

connection if ↵ and � are monotone functions and

l  �(↵(l))

↵(�(m)) v m

for all l 2 L and m 2M .

Abstract absReachability semantics:

\
Reach : V ! \

States

\
Reach(start) = >

8v0 2 V \ {start} :

\
Reach(v

0
) =

G

v2V,(v,v0)2E

[[labeling(v, v

0
)]]

#
(

\
Reach(v))
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Putting it all together: 
The Abstract Reachability Semantics 

Abstract Reachability Semantics captured as least fixed point of: 

start

1 3

x = 0

Pos(x < 100)

Neg(x < 100)

x = x+1

2

Proof. By the ascending chain condition the sequence

?, f(?), f2
(?), . . . must eventually stabilize. So for some

n, f

n
(?) is a fixed point of f . It is also the least fixed point:

We show by induction over n that f

m
(?)  lfpf . Clearly,

f

0
(?) = ?  lfpf . Then, our induction hypothesis is that

f

m
(?)  lfpf . By monotonicity, we also get f

m+1
(?) 

f(lfpf) = lfpf , which concludes the proof.

(P(Z),✓)

(Z>
?,)

� : Z>
? ! P(Z)

�(>) := Z
�(?) := ;
�(x) := {x}

↵ : P(Z)! Z>
?

↵(A) :=

8
><

>:

> : |A| � 2

x : A = {x}
? : A = ;

[[statement]] ✓ States⇥ States

[[statement]] : P(States)! P(States)
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Example II: Kleene Iteration to Compute 
Abstract Reachability Semantics 

y = 0;
x = 1;
z = 3;
while (x > 0) {
   if (x == 1) {
      y = 7;
   }
   else {
      y = z+4;
   }
   x = 3;
   print y;
}

start

1

x = 1
y = 0
z = 3

Pos(x > 0)

2

7Neg(x > 0)

Pos(x == 1)

3

Neg(x == 1)

4

y = 7

5

y = z+4

x = 3

6

print y



The Abstract Transformer F# 

≤

Idea for Correctness: Abstract Interpretation
Cousot, Cousot 1977

Establish a description relation ∆ between the concrete values and
their descriptions with:

x∆ a1 ∧ a1 " a2 ==⇒ x∆ a2

Concretization: γ a = {x | x∆ a}

// returns the set of described values
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Correct by construction 
(if concretization and abstraction have certain properties): 

Idea for Correctness: Abstract Interpretation
Cousot, Cousot 1977

Establish a description relation ∆ between the concrete values and
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Abstract Domain

Concrete Domain F

F#

Examples!?:

• The natural numbers ordered by the standard less-

than-or-equal relation: (N,).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),✓).

• The set of subsets of a given set (its powerset) ordered

by the subset relation: (P(A),◆).

• The natural numbers ordered by divisibility : (N, |).

• The vertex set V of a directed acyclic graphG = (V,E)

ordered by reachability (reflexive, transitive closure of

edge relation).

• The vertex set V of an arbitrary graph G = (V,E)

ordered by reachability.

• For a set X and a partially-ordered set P , the function

space F : X ! P , where f  g if and only if f(x) 
g(x) for all x in X.

Complete lattices:

A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)

and a greatest lower bound (denoted

d
A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,

2. for every upper bound y of A, we have x  y.

Examples least upper bounds:

Partially-ordered set (D,) A ✓ D

F
A

d
A

(N,) {1, 2, 3} ? ?

(R,) {x 2 R | x < 1} ? ?

(R,) {x 2 R | x  1} ? ?

(Q,) {x 2 Q | x2  2} ? ?

(N,) {x 2 N | x is odd} ? ?

Partially-ordered set (D,) A ✓ D

F
A

d
A

(P(N),✓) {{1, 2}, {2, 4, 5}} ? ?

(P(N),◆) {{1, 2}, {2, 4, 5}} ? ?

(N, |) {3, 4, 5} ? ?

(A ! N,) {f, g, h} ? ?

Some important lattices

For any set S, its power set (P(S),✓) with set inclusion is

a lattice:

“join”:

F
A =

S
A

“meet”:

d
A =

T
A

“top”: > = S

“bottom”: ? = ;

For any set S and lattice (L,L), the total function space

(S ! L,) is a lattice, with f  g :, 8s 2 S : f(x)  g(x):

“join”:

F
A = �s.

F
f2A f(s)

“meet”:

d
A = �s.

d
f2A f(s)

“top”: > = �s.>L

“bottom”: ? = �s.?L

For any set S the flat lattice (S[{?,>},) is a lattice, with

a  b :, a = b _ a = ? _ b = >.

S = Z

•
F

A =

S
A,

•
d

A =

T
A,

• ? = ; =

S
;,

• > = S =

S
S.

Complete lattice (D,)

F
A

d
A ? >

(P(A),✓)

S
A

T
A ; A

(X ! L,)

with = {(f, g) | 8x 2 X : f(x) L g(x)}

Properties of complete lattices:

Every complete lattice (D,) has

• a least element (bottom element): ? =

F
;, and

• a greatest element (top element): > =

F
D.

Fixed points:

A fixed point of a function f : D ! D is an element x 2 D

with x = f(x).

Example:

f : P({1, 2, 3, 4, 5}) ! P({1, 2, 3, 4, 5})
f(X) = {1, 2, 3} [X

{1, 2, 3}
{1, 2, 3, 4}

{1, 2, 3, 4, 5}

Least fixed point:

The least fixed point l, denoted lfp f , of a function f : D ! D

over a lattice (D,), is a fixed point of f , such that for every

fixed point x of f : l  x.

Kleene iteration:

?  f(?)  f

2
(?)  f

3
(?)  . . .

Ascending Chain Condition:

A partially-ordered set S satisfies the ascending chain condi-

tion if every strictly ascending sequence of elements is finite.

a1  a2  a3  · · ·  an  an+1  . . .

an = an+1 = an+2 . . .

↵
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From Local to Global Correctness: 
Kleene Iteration 

≤

Idea for Correctness: Abstract Interpretation
Cousot, Cousot 1977

Establish a description relation ∆ between the concrete values and
their descriptions with:
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// returns the set of described values
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Fixpoint Transfer Theorem 

↵ : P(Z) ! Z>
?

↵(A) :=

8
><

>:

> : |A| � 2

x : A = {x}
? : A = ;

Fixpoint transfer theorem:

Local consistency:

Let (L,) and (L

#
,#

) be two lattices, � : L

# ! L a

monotone function, and F : L ! L and F

# ! F

#
two

monotone functions, with

8l# 2 L

#
: �(F

#
(l

#
)) � F (�(l

#
)).

Then:

lfp F  �(lfp F

#
).

↵
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Local Correctness 

Global Correctness 

Fix(F) Fix(F#)

lfp F lfp F#
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A partially-ordered set (L,) is a complete lattice if every

subset A of L has both a least upper bound (denoted

F
A)
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A).

Upper bound:

An element x is an upper bound of a set A if x if for every

element a of A, we have a  x.

Least upper bound:

x is the least upper bound of A, denoted

F
A, if

1. x is an upper bound of A,
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F
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F
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≤

Idea for Correctness: Abstract Interpretation
Cousot, Cousot 1977

Establish a description relation ∆ between the concrete values and
their descriptions with:

x∆ a1 ∧ a1 " a2 ==⇒ x∆ a2

Concretization: γ a = {x | x∆ a}

// returns the set of described values
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Outlook: Other Abstractions 

¢  Signs 
¢  Parity  
¢  Intervals 
¢  Octagons 
¢  Congruence 


