Design and Analysis of

Real-Time Systems
Foundations of Abstract Interpretation Il

Jan Reineke

Advanced Lecture, Summer 2013

How to Compute the Least Fixed Point

Kleene lteration:

<fL LSS

Why is this increasing?
Will this reach the fixed point? @
It will here: — X=0

But in general?
g @—{Neg(x <100) |—>@

[Pos(x < 100) |

How to Compute the Least Fixed Point

Kleene lteration:

<fL LSS

Why is this increasing?

Will this reach the fixed point? @
It will here: — _, bk=o
But in general?
@ @—{Neg(x < 100) |—>@
x=0

‘ Neg(true)| @ NO,

Pos(true)

How to Compute the Least Fixed Point

Kleene lteration:

<fL LSS

Why is this increasing?

Will this reach the fixed point? @
It will here: — _, bk=o
But in general?
@ @—{Neg(x < 100) |—>@
x=0
‘ Neg(true)| @ NOI
Pos(true)

Lattice has infinite ascending chains.

Infinite Ascending Chains

‘ Neg(true)| @ NO’

Pos(true)

Think of an example of an
infinite ascending chain.

Ascending Chain Condition

A partially-ordered set S satisfies the ascending chain condi-
tion if every strictly ascending sequence of elements is finite.

T

Theorem (Ascending Chain Condition):

Let (S,<) be a complete lattice set that satisfies the as-
cending chain condition, and let f : S — S be a monotone
function. Then, there is an n € N, such that

ifp f=1"(L).

= L ength of longest ascending chain determines
worst-case complexity of Kleene lteration.

Ascending Chain Condition: Examples

A partially-ordered set S satisfies the ascending chain condi-
tion if every strictly ascending sequence of elements is finite.

Power set lattice
/@)\ Flat lattice _I_
a,b a,c b, c / / \

-1 0 1

a S N

- Ascending chain condition does not imply finite partially-ordered set!

How about total function space lattice?
How about finite partially-ordered sets?

Recap: Abstract Interpretation

o Semantics-based approach to program analysis

o Framework to develop provably correct and terminating
analyses

Ingredients:
o Concrete semantics: Formalizes meaning of a program ,/
o Abstract semantics

o Both semantics defined as fixpoints of monotone (/)
functions over some domain

o Relation between the two semantics establishing
correctness

Abstract Semantics

Similar to concrete semantics:

o A complete lattice (L* <) as the domain for
abstract elements

o A monotone function F# corresponding to the
concrete function F

o Then the abstract semantics is the least fixed
point of F#, Ifp F*

If F# “correctly approximates” F,
then Ifp F#“correctly approximates” Ifp F.

An Example Abstract Domain
for Values of Variables

(P(Z)ag) {.,2,-1,0,1,2, ..}

_ AN

NN N

\\ 21 (41,08 {01} {1,2) {2,3} ..
// 0

v 7, — P(Z)

a:P(Z) =7,

An Example Abstract Domain
for Values of Variables

(Z1,<) (P(2Z), 9/{//\\}\
__///T> RGN
N\l N

How to relate the two?
=» Concretization function, specifying “meaning” of abstract values.

v 7, — P(Z)

/

|
1

= Abstraction function: determines best representation concrete values.

a:P(Z) =7,

Relation between the Abstract and
Concrete Domains

Relation between the Abstract and
Concrete Domains

)
/T
1l

)
@?T\
|| II

Z
0
&

Relation between the Abstract and
Concrete Domains

z T
0 a(A) = {m
&

)
/T
1l

2
=
I

Relation between the Abstract and
Concrete Domains

V(1) =2 T 4] >
y(L) =10 a(A):{a: : A ={
(&) = {a) Lia=

N\

S

Relation between the Abstract and
Concrete Domains

V(1) =2 T Al > 2
”y(_) = () a(A) =Rz :A={zx}
(z) = {a) Lia=g

1. Are these functions monotone?
2. Should they be?

3. What is the meaning of the partial order in the
abstract domain?

4. What if we first abstract and the concretize?

How to Compute in the Abstract Domain
Example: Multiplication on Flat Lattice

« T a|l o L

How to Compute in the Abstract Domain
Example: Multiplication on Flat Lattice

i
Denotes abstract /* —l_ | a 0 |

version of operator

How to Compute in the Abstract Domain:
Correctness Conditions

Correctness Condition:
op*

)
| >

Concrete Domain Q Op >©

Correct by construction

(if concretization and abs;raction have certain properties):
op

Abstract Domain

Abstract Domain >

A

Y (87

4

Concrete Domain Q Op »@

How to Compute in the Abstract Domain
Example: Multiplication on Flat Lattice

0 N

How to Compute in the Abstract Domain
Example: Multiplication on Flat Lattice

0 N

How to Compute in the Abstract Domain
Example: Multiplication on Flat Lattice

0 N

How to Compute in the Abstract Domain
Example: Multiplication on Flat Lattice

1 0 * > 0

How to Compute in the Abstract Domain
Example: Multiplication on Flat Lattice

How to Compute in the Abstract Domain
Example: Multiplication on Flat Lattice

How to Compute in the Abstract Domain
Example: Multiplication on Flat Lattice

{a} {} —*—{axb}

How to Compute in the Abstract Domain
Example: Multiplication on Flat Lattice

a b : > ab
A

{a} {b} —*—{axb}

How to Compute in the Abstract Domain:
Correct by Construction

Correct by construction

(if concretization and abstraction have certain properties):

op*

Abstract Domain

vy Q

4

Concrete Domain Q Op >©

“Certain properties™ Notion of Galois connections:
Let (L, <) and (M, C) be partially ordered sets and o €

L — M, ’yEM—>L We call (L, <) Z (M,E) a Galois
connection if a and v are monotone functions and

l < y(e(l))
a(y(m)) E m
foralll € L and m € M.

Galois connections

Notion of Galois connections:

Let (L, <) and (M, C) be partially ordered sets and o €
L—-M,veM— L. We call (L, <) <—L—> (M,C) a Galois

connection if a and v are monotone fuﬁctions and
l < (1))
a(y(m)) E m
foralll € L and m € M.

L,<) (M, C)

Graphically:

Galois connections

Notion of Galois connections:

Let (L, <) and (M, C) be partially ordered sets and o €
L—-M,veM— L. We call (L, <) % (M,C) a Galois

connection if a and v are monotone functions and

[

a(y(m))

foralll € L and m € M.

Graphically:

(

L

<

)

<

C

v(a(l))

Why monotone?

Galois connections

Notion of Galois connections:

Let (L, <) and (M, C) be partially ordered sets and o €

L—-M,yeM— L. We call (L, <) % (M,C) a Galois
connection if a and 7y are monotone functions and

l < y(a(l))

Why monotone?

a(y(m)) E m
foralll € L and m € M.

L,<) (M, C)

Graphically:

For soundness.

Galois connections

Notion of Galois connections:

Let (L, <) and (M, C) be partially ordered sets and o €

L—-M,yeM— L. We call (L, <) % (M,C) a Galois
connection if a and 7y are monotone functions and

[< vy(a(l
(1)) Why monotone?

a(y(m)) E m
foralll € L and m € M.

L,<) (M, C)

Graphically:

For precision.

For soundness.

Galois connections: Properties

Graphically:

Properties:
1) Can be used to systematically construct correct (and in
fact the most precise) abstract operations: op™ = a o opo~
2) a) Abstraction function induces concretization function
b) Concretization function induces abstraction function

Galois connections: Properties

Graphically:

Properties:
1) Can be used to systematically construct correct (and in
fact the most precise) abstract operations: op™ = a o opo~ Why ?
2) a) Abstraction function induces concretization function
b) Concretization function induces abstraction function How?

Abstracting Sets of Concrete States
Recap: Concrete States

Concrete states are not just sets of values...

Concrete states consist of variables and memory:

s = (p,) € States

Values of Variables

p: Vars = int <—

w: N — it < Contents of Memory

States = (Vars — int) x (N — int)
States = (Vars — 7Z) x (N — Z)

Abstracting Sets of Concrete States
Recap: Concrete States

Concrete states are not just sets of values...

Concrete states consist of variables and memory:

s = (p,) € States

Values of Variables

p: Vars = int <—

p:N = int < Contents of Memory

- ; i
States = (Vars — 7)) x (N — 7Z)

Abstracting Sets of Concrete States
Recap: Concrete States

Reachability semantics is defined on sets of states:

[statement] C States x States
[statement] : P(States) — P(States)

statement] (S) := {s' | s € S : (s,5") € [statement]}

| —

P(States) = P((Vars - Z) x (N — Z))

Relation between
Concrete Domain and Abstract Domain

Concrete domain! Abstract domain?

P(States) =
P((Vars — 7Z) x (N — 7))

Relation between
Concrete Domain and Abstract Domain

Concrete domain! Abstract domain?
P(States) = States = Vars — ZI

P((Vars — 7Z) x (N — 7))

Relation between
Concrete Domain and Abstract Domain

Concrete domain! Abstract domain?
P(States) = States = Vars — ZI

P((Vars — 7Z) x (N — 7))

Relation between the two?
- For ease of understanding,
introduce Intermediate domain:

/\

PowerSetStates = Vars — P(Z)

Relation between
Concrete Domain and Intermediate Domain

Concrete domain: Intermediate domain:

/\

P(States) = PowerSetStates = Vars — P(Z)
P((Vars — 7Z) x (N — 7))

Abstraction:

Concretization:

Relation between
Concrete Domain and Intermediate Domain

Concrete domain: Intermediate domain:

/\

P(States) = PowerSetStates = Vars — P(Z)
P((Vars — 7Z) x (N — 7))

Abstraction:
ac,1 : P(States) — PowerSetStates

ac,1(C) = x € Vars.{v(z) € Z | (v,m) € C}

Concretization:

Relation between
Concrete Domain and Intermediate Domain

Concrete domain: Intermediate domain:
P(States) = PowerSetStates = Vars — P(Z)

P((Vars — 7Z) x (N — 7))

Abstraction:
ac,1 : P(States) — PowerSetStates

ac,1(C) = x € Vars.{v(z) € Z | (v,m) € C}

Concretization:
V1,0 PowerSetStates — P(States)
v1,c(¢) :={(v,m) € States | Vx € Vars: v(z) € c(x)}

Relation between
Intermediate Domain and Abstract Domain

Intermediate domain: Abstract domain:

e —— L ————

PowerSetStates = Vars — P(Z) States = Vars — 7

Abstraction:

Concretization:

Relation between
Intermediate Domain and Abstract Domain

Intermediate domain: Abstract domain:

e —— L ————

PowerSetStates = Vars — P(Z) States = Vars — 7

Abstraction:

/\ /\

ar,a : PowerSetStates — States
a(c) := Az € Vars.a(c(x))

Concretization:

Relation between
Intermediate Domain and Abstract Domain

Intermediate domain: Abstract domain:

e —— L ————

PowerSetStates = Vars — P(Z) States = Vars — 7

Abstraction:

/\ /\

ar,a : PowerSetStates — States
a(c) := Az € Vars.a(c(x))

Concretization:

va.1 : States — PowerSetStates
v(a) := Az € Vars.y(a(x))

Relation between
Intermediate Domain and Abstract Domain

Intermediate domain: Abstract domain:

e —— L ————

PowerSetStates = Vars — P(Z) States = Vars — 7

Abstraction:

ar,a : PowerSetStates — States
a(c) := Az € Vars.a(c(x))

. . Abstraction and
Concretization: \

Concretization
— — functions from
va.1 : States — PowerSetStates before!
A~ k’
w(a) = \x € VCL?“S.’)/(CL(CC)) Could plug in other

abstractions for
sets of values. ..

Relation between
Concrete Domain and Abstract Domain

Concrete domain: Abstract domain:
P(States) = States = Vars — ZI

P((Vars — 7Z) x (N — 7))

Abstraction:
ac, A : P(States) — States

dC,A ‘= 1, A O QC I

Concretization:
YA.C States — P(States)

YA,C ‘= YI,C O YA,I

Relation between
Concrete Domain and Abstract Domain

Concrete domain: Abstract domain:
P(States) = States = Vars — ZI

P((Vars — 7Z) x (N — 7))

Abstraction:

ac, A : P(States) — States

Galois connections
can be composed to
obtain new Galois
connections.

dC,A ‘= 1, A O QC I

Concretization:
YA.C States — P(States)

YA,C ‘= YI,C O YA,I

Meaning of Statements in the
Abstract Domain

[R = e]” (@) :=a[R ~ [e]” (@)]
[R = M[e]]” (@) := a[R + T]
[Mle] = e2]7 (@) :=a

[Pos(e)]” (a) :=a

[Neg(e)]” (@) :=a

Meaning of Statements in the

Abstract Domain

[R = €]

[R = Mle]]
[Me1] = e2]
[Pos(e)]
[Neg(e)]

% H O H H*

(
(
(
(
(

Q)))))

[R = [e]” (@)]

ES
I
.

/

Can this be
done better?

Abstract Domain

[R = e]”
[R = Mle]]
[Me1] = e2]
[Pos(e)]

[Neg(e)]

Again:

For CorreCtneSS_' Abstract Domain

Meaning of Statements in the

=a
. \ Can this be
: <«

For the best
possible precision:

done better?

Abstract Domain

Meaning of Expressions

Evaluation of expressions is as expected:
[z]7 (@) := a(x) if x € Vars

[e1 op e2]% (@) := [er]” (@) op™ [e2]" (@)

Meaning of Expressions

Evaluation of expressions is as expected:
[z]7 (@) := a(x) if x € Vars

[ex op e2]% (@) := [er]” (@) op™ [e2]" (@)

\

As we have
seen earlier!

Putting it all together:
The Abstract Reachability Semantics

Abstract Reachability Semantics captured as least fixed point of:

@ V- %\m
@(start) =T
v’ € V\ {start} : Reach(v') = | | [labeling(v,v")]* (Reach(v))

veV,(v,w')EE

@(1) = [labeling(start, 1)]]#(@(875&7%)) LI [labeling(2, 1)]](%(2))
Reach(2) = [labeling(1,2)]* (Reach(1))

X
1l
o

Reach(3) = [labeling(1,3)]* (Reach(1
Neg(x<1oo)|"@ each(3) = [labeling(1,3)]* (Reach(1))

e

Reach(1) = [z = 0]* (Reach(start)) U [z = z + 1]% (Reach(2))
e Reach(2) = [Pos(z < 100)]* (Reach(1))
Reach(3) = [Neg(z < 100)]# (Reach(1))

[Pos(x < 100) |

Example: Kleene lteration to Compute
Abstract Reachability Semantics

x|—>J_
r s L %Negx«%»@ r s L

[Pos(x:100

x+— L e

Example: Kleene lteration to Compute
Abstract Reachability Semantics

x — 0 M @—1Neg><<100|->@ x— 1

|Posx;100)|

x+— L e

Example: Kleene lteration to Compute
Abstract Reachability Semantics

x — 0 M @—1Neg><<100|->@ x— 1

|Posx;100)|

x>0 zex1 (2)

Example: Kleene lteration to Compute
Abstract Reachability Semantics

r— 1 M M @—1N69(X<100)|->@ r— 1

|Pos(x: 100) |

x>0 zex1 (2)

Example: Kleene lteration to Compute
Abstract Reachability Semantics

=T 250 zer] @—meg(x«oo»»@ zerl =T

|Pos(x: 100) |

r— T MM

Example ll: Kleene lteration to Compute
Abstract Reachability Semantics

y = 0
x =1 a Neg(x > 0) @
z = 3; Pos(x > 0)
while (x > 0) {
1f (x == 1) {
y = 77
} |Posx 1||Negx 1

else {
y = z+4;
} z+4 D:I
X = 3;
print y;

The Abstract Transformer F#

[ocal Correctness Condition:

#
Abstract Domain F >
A Vi
Concrete Domain Q F :Q

The Abstract Transformer F#

[ocal Correctness Condition:
F#

Abstract Domain >

! O

A VI

Concrete Domain Q F :Q

Correct by construction
(if concretization and abstraction have certain properties):

F#

\/

Abstract Domain

Y (87

Y

Concrete Domain Q F >Q

From Local to Global Correctness:
Kleene lteration

Abstract Domain > - > e -

7|
j > >

Concrete Domain Q F >©L> - _F>©

Fixpoint Transfer Theorem

Let (L,<) and (L#,<%) be two lattices, v : L¥ — L a
monotone function, and F : L — L and F* — F7 two
monotone functions, with

VI" € L7 : y(F7(17)) > F(v(I7)).

Then: \

4 Local Correctness
ifp F <~(ifp F7).

\ Global Correctness

Outlook: Other Abstractions

o Signs

o Parity

o Intervals

o Octagons

o Congruence

