
Design and Analysis of 
Real-Time Systems  
Resource Sharing  

Jan Reineke 
 
 
Advanced Lecture, Summer 2013 



Resource Sharing 

¢  So far, we have assumed sets of independent 
tasks. 

¢  However, tasks may share resources 
l  to communicate with each other, e.g. through 

shared memory 
l  because resources are sparse, e.g. I/O devices, 

duplication would be expensive 
¢  Need to ensure mutual exclusion 

l  typically by protecting accesses to the shared 
resource by semaphores 



Resource Sharing 

¢  Shared resources: 
l  Data structures, variables, main 

memory area, files, I/O units, the 
processor, etc. 

¢  Mutual exclusion, critical section 
l  When a job enters a critical 

section of a shared resource, 
other jobs trying to enter a 
critical section of the same 
resource are blocked. 

Why do We Have to Worry about Resource
Sharing?

4 Dec. 03, 2012: Scheduling Theory in Real-Time Systems (lv24075)

Shared Resources:
Data structures, variables,
main memory area, file, set of
registers, I/O unit, the
processor, etc.
Mutual exclusion, critical
section

When a job enters the critical
section of a shared resource,
the accesses to the shared
resource from other jobs are
blocked.



Resource Sharing Affects Scheduling and 
Schedulability: Priority Inversion 

Priority Inversion: a higher priority job is blocked 
by a lower-priority job. 

Priority Inversion

6 Dec. 03, 2012: Scheduling Theory in Real-Time Systems (lv24075)

Priority Inversion: A higher priority job is
blocked by a lower-priority job.

Unavoidable when there are critical
sections

critical section
normal execution

J2

J1

J1 is blocked



Priority Inversion: Another Example 
Priority Inversion: Another Example

7 Dec. 03, 2012: Scheduling Theory in Real-Time Systems (lv24075)

critical section
normal execution

J1

J1 is blocked by J3

priority inversion

J2

could be very long

J3



Priority Inversion in the Real World: 
Mars Pathfinder 

Case Study: MARS Pathfinder Problem (1)

9 Dec. 03, 2012: Scheduling Theory in Real-Time Systems (lv24075)

A few days into the mission.....

Not long after Pathfinder started gathering
meteorological data, the spacecraft began
experiencing total system resets, each
resulting in losses of data.



Priority Inversion in the Real World: 
Mars Pathfinder 

“VxWorks provides preemptive priority scheduling of threads. 
Tasks on the Pathfinder spacecraft were executed as threads 
with priorities” 
“Pathfinder contained an information bus, which you can think of 
as a shared memory area used for passing information between 
different components of the spacecraft.” 
“A bus management task ran frequently with high priority to move 
certain kinds of data in and out of the information bus. Access to 
the bus was synchronized with mutual exclusion locks.” 
¢  The meteorological data gathering task ran as an infrequent, 

low priority thread, … When publishing its data, it would 
acquire a mutex, write to the bus, and release the mutex. 

¢  It also had a communications task that ran with medium 
priority. 



Priority Inversion in the Real World: 
Mars Pathfinder 

“Most of the time this combination worked fine. However, very infrequently 
it was possible for an interrupt to occur that caused the (medium priority) 
communications task to be scheduled during the short interval while the 
(high priority) information bus thread was blocked waiting for the (low 
priority) meteorological data thread. In this case, the long-running 
communications task, having higher priority than the meteorological task, 
would prevent it from running, consequently preventing the blocked 
information bus task from running. After some time had passed, a 
watchdog timer would go off, notice that the data bus task had not been 
executed for some time, conclude that something had gone drastically 
wrong, and initiate a total system reset.” 

High priority Medium priority Low priority 

Data retrieval from 
memory 

Communication task Meteorological data 
collection 



Naïve solution for Priority Inversion 

Disallow preemption during critical sections 
¢  It is simple. 
¢  No deadlocks. Why? 
¢  A high-priority task is blocked for at most one 

critical section. Why? 
¢  But: it creates unnecessary blocking. Why? 

Naïve Solution for Priority Inversion

8 Dec. 03, 2012: Scheduling Theory in Real-Time Systems (lv24075)

Disallow preemption during critical sections
It is simple
But, it creates unnecessary blocking, as unrelated tasks may be blocked

critical section
normal execution

J1

J2

J3



Resource Access Protocols 

¢  Basic Idea: 
l  Modify (increase) the priority of those jobs that 

cause blocking. 
l  When a job Jj blocks one or more higher-priority 

tasks, it temporarily assumes a higher priority. 
¢  Methods: 

l  Priority Inheritance Protocol (PIP), for fixed-
priority scheduling 

l  Priority Ceiling Protocol (PCP), for fixed-priority 
scheduling 

l  Stack Resource Policy (SRP), for both fixed- 
and dynamic-priority scheduling 



Priority Inheritance Protocol (PIP) 

When a lower priority job Jj blocks a higher-priority job, 
the priority of Jj is promoted to the priority level of the 
highest-priority job that job Jj blocks. 
For example, if the priority order is J1 > J2 > J3 > J4 > J5, 
¢  When job J4 blocks jobs J2 and J3, the priority of J4 is 

promoted to the priority level of J2. 
¢  When job J5 blocks J1 and J3, its priority level is 

promoted to the priority level of J1. 
 
Priority inheritance solved the Mars Pathfinder problem: 
the VxWorks operating system used in the pathfinder 
implements priority inheritance. The software was shipped 
with priority inheritance turned off. 



Example of PIP 

¢  t0: J1 arrives and preempts J1 

¢  t1: J1 attempts to enter the critical section. J1 is blocked by         
J3 and J3 inherits J1’s priority 

¢  t2: J2 arrives, but has a lower priority than J3 

¢  t3: J3 leaves its critical section, and J1 now preempts J3 

Example of PIP

15 Dec. 03, 2012: Scheduling Theory in Real-Time Systems (lv24075)

critical section
normal execution

J1

J1 is blocked by J3

J2
t2

J3
t0 t1 t3 t4

t0: J1 arrives and preempts J3, since J1 does not want to enter the critical section
t1: J1 locks the semaphore and tries to enter the critical section. J1 is blocked by J3,
and J3 inherits J1’s priority
t2: J2 arrives and has a lower priority than J3, since J3 inherited J1’s priority.
t3: J3 leaves its critical section, and J1 now preempts J3.
t4: J1 finishes, and J2 is the highest-priority task.



Weaknesses of PIP 

Blocking in PIP: 
¢  Direct blocking: higher-priority job tries to acquire a 

resource held by a lower-priority job 
¢  Push-through blocking: a medium-priority job is blocked by 

a lower-priority job that has inherited a higher priority 
Problems of PIP: 
¢  PIP might cause deadlock if there are multiple resources: 

 
¢  Under PIP, if there are n lower-priority jobs, a higher-priority 

job can be blocked for the duration of n critical sections: 
Chained blocking 

Weakness of PIP

16 Dec. 03, 2012: Scheduling Theory in Real-Time Systems (lv24075)

Blocking in PIP
Direct Blocking: higher-priority job tries to acquire a resource held by a
lower-priority job.
Push-through Blocking: medium-priority job is blocked by a
lower-priority job that has a higher priority from a job it directly blocks

Problems of PIP
PIP might cause deadlock if there are multiple resources

Under PIP, if there are n lower priority jobs , a higher-priority job can
be blocked for as high as the duration of n critical sections.



PIP: Chained Blocking 

2

7

Basic Priority Inheritance Protocol (BIP)

 supported in RT POSIX
 Idea:

 A gets semaphore S
 B with higher priority tries to lock S, and blocked by S
 B transfers its priority to A (so A is resumed and run with 

B’s  priority)

 Run time behaviour: whenever a lower-
priotity task blocks a higher priority task, it 
inherits the priority of the blocked task

8

Example

H

M

L

P(S1) P(S2)
V(S1)
V(S2)

P(S2)

P(S1)
V(S1)

V(S2)

Task 1

Task 2

Task 3

Blocked

Using S1

Using S2Running with priority H

9

Problem 1: potential deadlock

P(S2)

P(S1)H

L

Task 1

Task 2

P(S2)

P(S1)

Deadlock!

Task 2: ... P(S2) ... P(S1)...
Task 1: ... P(S1) ... P(S2)...

10

Problem 2: chained blocking – many preemptions 

H

M

L

P(S1) P(S2)
V(S1)
V(S2)

P(S2)

P(S1)
V(S1)

V(S2)

Task 1

Task 2

Task 3

Blocked

Using S1

Using S2
Task 1 needs M resources may be blocked M times:
many preemptions/much run-time overheads
maximal blocking=sum of all CS sections for lower-priority tasks

11

BIP:  Blocking time calculation

 Let 
 CS(k,S) denote the computing time for the critical section 

that  task k uses semaphore S.
 Use(S) is the set of tasks using S

 The maximal blocking time for task i:

 B= SUM{CS(k,S)| i,k in Use(S), pr(k)<pr(i)<=C(S)}

12

Properties of BIP: + and -

 Bounded Priority inversion (+)
 Reasonable Run-time performance (+)
 Require no info on resource usage of tasks (+)
 Potential deadlocks (-)
 Chain-blocking – many preemptions (-)

Higher-priority task can be blocked 
by each lower-priority task! 



PIP: Blocking-Time Calculation 

[l, u]r[l

0
, u

0
] =

"(
l : l

0 � l

max{x 2 J | x  l

0} : l

0
< l

,

(
u : u

0  u

min{x 2 J | x � u

0} : u

0
> u

#

x 7! [0, 0]

x 7! [0, 1]

x 7! [0, 1000]

y 7! [2, 2]

y 7! [2, 1000]

y 7! [2,1]

Fr(x) := xrF (x)

?  Fr(?)  F

2
r(?)  F

3
r(?)  . . .

?  F (?)  F

2
(?)  F

3
(?)  . . .

After narrowing:

x 7! [0, 1000]

x 7! [0, 999]

x 7! [1, 1000]

y 7! [2, 2000]

x 7! [1000, 1000]

y 7! [3, 2001]

Integrated Cache and Pipeline Analysis:

PS ! CS?

A tB = �p 2 PS.A(p) tCS B(p)

Concretization function for integrated analysis:

�(AS) :=

[

ps2PS

{hp, ci | p 2 �PS(ps) ^ c 2 �CS(AS(ps))}

�(AS) :=

[

ps2PS

�PS(ps) \ �CS(AS(ps))

F
r
e
q
u
e
n
c
y

Execution

time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

Timing compositionality:

T

pipeline, cache

(P, hp, ci) = T

pipeline

(P, hpi)� T

cache

(P, hci)
WCET

pipeline, cache

(P ) = max

p,c
T

pipeline, cache

(P, hp, ci)

 max

p
T

pipeline

(P, hpi)�max

c
T

cache

(P, hci)

= WCET

pipeline

(P ) +WCET

cache

(P )

Temporal isolation:

T (P1, hp1, c1, p2, c2i) = T (P1, hp1, c1, p02, c02i) = T

isolated

(P1, hp1, c2i)
T (P1, hp1, c1, p2, c2i) = T

isolated

(P1, hp1, c2i)

WCET(P1) = max

p1,c1,p2,c2
T (P1, hp1, c1, p2, c2i)

= max

p1,c1
T

isolated

(P1, hp1, c1i)

Blocking-time in priority-inheritance protocol:

CS(k, S)

Use(S)

Bi =

X
{CS(k, S) | i, k 2 Use(S),⇡(k) < ⇡(i)}

2. REFERENCES

[l, u]r[l

0
, u

0
] =

"(
l : l

0 � l

max{x 2 J | x  l

0} : l

0
< l

,

(
u : u

0  u

min{x 2 J | x � u

0} : u

0
> u

#

x 7! [0, 0]

x 7! [0, 1]

x 7! [0, 1000]

y 7! [2, 2]

y 7! [2, 1000]

y 7! [2,1]

Fr(x) := xrF (x)

?  Fr(?)  F

2
r(?)  F

3
r(?)  . . .

?  F (?)  F

2
(?)  F

3
(?)  . . .

After narrowing:

x 7! [0, 1000]

x 7! [0, 999]

x 7! [1, 1000]

y 7! [2, 2000]

x 7! [1000, 1000]

y 7! [3, 2001]

Integrated Cache and Pipeline Analysis:

PS ! CS?

A tB = �p 2 PS.A(p) tCS B(p)

Concretization function for integrated analysis:

�(AS) :=

[

ps2PS

{hp, ci | p 2 �PS(ps) ^ c 2 �CS(AS(ps))}

�(AS) :=

[

ps2PS

�PS(ps) \ �CS(AS(ps))

F
r
e
q
u
e
n
c
y

Execution

time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

Timing compositionality:

T

pipeline, cache

(P, hp, ci) = T

pipeline

(P, hpi)� T

cache

(P, hci)
WCET

pipeline, cache

(P ) = max

p,c
T

pipeline, cache

(P, hp, ci)

 max

p
T

pipeline

(P, hpi)�max

c
T

cache

(P, hci)

= WCET

pipeline

(P ) +WCET

cache

(P )

Temporal isolation:

T (P1, hp1, c1, p2, c2i) = T (P1, hp1, c1, p02, c02i) = T

isolated

(P1, hp1, c2i)
T (P1, hp1, c1, p2, c2i) = T

isolated

(P1, hp1, c2i)

WCET(P1) = max

p1,c1,p2,c2
T (P1, hp1, c1, p2, c2i)

= max

p1,c1
T

isolated

(P1, hp1, c1i)

Blocking-time in priority-inheritance protocol:

CS(k, S)

Use(S)

Bi =

X
{CS(k, S) | i, k 2 Use(S),⇡(k) < ⇡(i)}

2. REFERENCES

The set of tasks using semaphore S. 

The WCET of the critical section of 
task k using semaphore S. 

The maximal blocking time of task i under PIP: 

[l, u]r[l

0
, u

0
] =

"(
l : l

0 � l

max{x 2 J | x  l

0} : l

0
< l

,

(
u : u

0  u

min{x 2 J | x � u

0} : u

0
> u

#

x 7! [0, 0]

x 7! [0, 1]

x 7! [0, 1000]

y 7! [2, 2]

y 7! [2, 1000]

y 7! [2,1]

Fr(x) := xrF (x)

?  Fr(?)  F

2
r(?)  F

3
r(?)  . . .

?  F (?)  F

2
(?)  F

3
(?)  . . .

After narrowing:

x 7! [0, 1000]

x 7! [0, 999]

x 7! [1, 1000]

y 7! [2, 2000]

x 7! [1000, 1000]

y 7! [3, 2001]

Integrated Cache and Pipeline Analysis:

PS ! CS?

A tB = �p 2 PS.A(p) tCS B(p)

Concretization function for integrated analysis:

�(AS) :=

[

ps2PS

{hp, ci | p 2 �PS(ps) ^ c 2 �CS(AS(ps))}

�(AS) :=

[

ps2PS

�PS(ps) \ �CS(AS(ps))

F
r
e
q
u
e
n
c
y

Execution

time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

Timing compositionality:

T

pipeline, cache

(P, hp, ci) = T

pipeline

(P, hpi)� T

cache

(P, hci)
WCET

pipeline, cache

(P ) = max

p,c
T

pipeline, cache

(P, hp, ci)

 max

p
T

pipeline

(P, hpi)�max

c
T

cache

(P, hci)

= WCET

pipeline

(P ) +WCET

cache

(P )

Temporal isolation:

T (P1, hp1, c1, p2, c2i) = T (P1, hp1, c1, p02, c02i) = T

isolated

(P1, hp1, c2i)
T (P1, hp1, c1, p2, c2i) = T

isolated

(P1, hp1, c2i)

WCET(P1) = max

p1,c1,p2,c2
T (P1, hp1, c1, p2, c2i)

= max

p1,c1
T

isolated

(P1, hp1, c1i)

Blocking-time in priority-inheritance protocol:

CS(k, S)

Use(S)

B

PIP
i =

X
{max{CS(k, S) | k 2 Use(S)} | ⇡(k) < ⇡(i)}

Priority ceiling:

⇧(R)

⇧

0
(t)

⌦

⇡(t)

� ⇡(t)

B

PCP
i = max{CS(k, S) | i, k 2 Use(S),⇡(k) < ⇡(i)  ⇧(S)}

8i, 1  i  n,

Ci +Bi

Ti
+

i�1X

j=1

Cj

Tj
 i(2

1/i � 1)

2. REFERENCES



Improvement:  
Priority Ceiling Protocol (PCP) 

¢  Two key assumptions: 
l  The assigned priorities of all jobs are fixed. 
l  The resources required by all jobs are known a 

priori, i.e., before the execution of any job begins. 
¢  Definition: the priority ceiling of a semaphore R is 

the highest priority of all the jobs that use R, and 
is denoted  

¢  Definition: The current priority ceiling          of the 
system is equal to the highest priority ceiling of 
the semaphores in use at time t, or      if no 
resources are in use at time t. (    is less than all 
other priorities.) 

[l, u]r[l

0
, u

0
] =

"(
l : l

0 � l

max{x 2 J | x  l

0} : l

0
< l

,

(
u : u

0  u

min{x 2 J | x � u

0} : u

0
> u

#

x 7! [0, 0]

x 7! [0, 1]

x 7! [0, 1000]

y 7! [2, 2]

y 7! [2, 1000]

y 7! [2,1]

Fr(x) := xrF (x)

?  Fr(?)  F

2
r(?)  F

3
r(?)  . . .

?  F (?)  F

2
(?)  F

3
(?)  . . .

After narrowing:

x 7! [0, 1000]

x 7! [0, 999]

x 7! [1, 1000]

y 7! [2, 2000]

x 7! [1000, 1000]

y 7! [3, 2001]

Integrated Cache and Pipeline Analysis:

PS ! CS?

A tB = �p 2 PS.A(p) tCS B(p)

Concretization function for integrated analysis:

�(AS) :=

[

ps2PS

{hp, ci | p 2 �PS(ps) ^ c 2 �CS(AS(ps))}

�(AS) :=

[

ps2PS

�PS(ps) \ �CS(AS(ps))

F
r
e
q
u
e
n
c
y

Execution

time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

Timing compositionality:

T

pipeline, cache

(P, hp, ci) = T

pipeline

(P, hpi)� T

cache

(P, hci)
WCET

pipeline, cache

(P ) = max

p,c
T

pipeline, cache

(P, hp, ci)

 max

p
T

pipeline

(P, hpi)�max

c
T

cache

(P, hci)

= WCET

pipeline

(P ) +WCET

cache

(P )

Temporal isolation:

T (P1, hp1, c1, p2, c2i) = T (P1, hp1, c1, p02, c02i) = T

isolated

(P1, hp1, c2i)
T (P1, hp1, c1, p2, c2i) = T

isolated

(P1, hp1, c2i)

WCET(P1) = max

p1,c1,p2,c2
T (P1, hp1, c1, p2, c2i)

= max

p1,c1
T

isolated

(P1, hp1, c1i)

Blocking-time in priority-inheritance protocol:

CS(k, S)

Use(S)

Bi =

X
{CS(k, S) | i, k 2 Use(S),⇡(k) < ⇡(i)}

Priority ceiling:

⇧(R)

⇧

0
(t)

2. REFERENCES

[l, u]r[l

0
, u

0
] =

"(
l : l

0 � l

max{x 2 J | x  l

0} : l

0
< l

,

(
u : u

0  u

min{x 2 J | x � u

0} : u

0
> u

#

x 7! [0, 0]

x 7! [0, 1]

x 7! [0, 1000]

y 7! [2, 2]

y 7! [2, 1000]

y 7! [2,1]

Fr(x) := xrF (x)

?  Fr(?)  F

2
r(?)  F

3
r(?)  . . .

?  F (?)  F

2
(?)  F

3
(?)  . . .

After narrowing:

x 7! [0, 1000]

x 7! [0, 999]

x 7! [1, 1000]

y 7! [2, 2000]

x 7! [1000, 1000]

y 7! [3, 2001]

Integrated Cache and Pipeline Analysis:

PS ! CS?

A tB = �p 2 PS.A(p) tCS B(p)

Concretization function for integrated analysis:

�(AS) :=

[

ps2PS

{hp, ci | p 2 �PS(ps) ^ c 2 �CS(AS(ps))}

�(AS) :=

[

ps2PS

�PS(ps) \ �CS(AS(ps))

F
r
e
q
u
e
n
c
y

Execution

time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

Timing compositionality:

T

pipeline, cache

(P, hp, ci) = T

pipeline

(P, hpi)� T

cache

(P, hci)
WCET

pipeline, cache

(P ) = max

p,c
T

pipeline, cache

(P, hp, ci)

 max

p
T

pipeline

(P, hpi)�max

c
T

cache

(P, hci)

= WCET

pipeline

(P ) +WCET

cache

(P )

Temporal isolation:

T (P1, hp1, c1, p2, c2i) = T (P1, hp1, c1, p02, c02i) = T

isolated

(P1, hp1, c2i)
T (P1, hp1, c1, p2, c2i) = T

isolated

(P1, hp1, c2i)

WCET(P1) = max

p1,c1,p2,c2
T (P1, hp1, c1, p2, c2i)

= max

p1,c1
T

isolated

(P1, hp1, c1i)

Blocking-time in priority-inheritance protocol:

CS(k, S)

Use(S)

Bi =

X
{CS(k, S) | i, k 2 Use(S),⇡(k) < ⇡(i)}

Priority ceiling:

⇧(R)

⇧

0
(t)

2. REFERENCES

[l, u]r[l

0
, u

0
] =

"(
l : l

0 � l

max{x 2 J | x  l

0} : l

0
< l

,

(
u : u

0  u

min{x 2 J | x � u

0} : u

0
> u

#

x 7! [0, 0]

x 7! [0, 1]

x 7! [0, 1000]

y 7! [2, 2]

y 7! [2, 1000]

y 7! [2,1]

Fr(x) := xrF (x)

?  Fr(?)  F

2
r(?)  F

3
r(?)  . . .

?  F (?)  F

2
(?)  F

3
(?)  . . .

After narrowing:

x 7! [0, 1000]

x 7! [0, 999]

x 7! [1, 1000]

y 7! [2, 2000]

x 7! [1000, 1000]

y 7! [3, 2001]

Integrated Cache and Pipeline Analysis:

PS ! CS?

A tB = �p 2 PS.A(p) tCS B(p)

Concretization function for integrated analysis:

�(AS) :=

[

ps2PS

{hp, ci | p 2 �PS(ps) ^ c 2 �CS(AS(ps))}

�(AS) :=

[

ps2PS

�PS(ps) \ �CS(AS(ps))

F
r
e
q
u
e
n
c
y

Execution

time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

Timing compositionality:

T

pipeline, cache

(P, hp, ci) = T

pipeline

(P, hpi)� T

cache

(P, hci)
WCET

pipeline, cache

(P ) = max

p,c
T

pipeline, cache

(P, hp, ci)

 max

p
T

pipeline

(P, hpi)�max

c
T

cache

(P, hci)

= WCET

pipeline

(P ) +WCET

cache

(P )

Temporal isolation:

T (P1, hp1, c1, p2, c2i) = T (P1, hp1, c1, p02, c02i) = T

isolated

(P1, hp1, c2i)
T (P1, hp1, c1, p2, c2i) = T

isolated

(P1, hp1, c2i)

WCET(P1) = max

p1,c1,p2,c2
T (P1, hp1, c1, p2, c2i)

= max

p1,c1
T

isolated

(P1, hp1, c1i)

Blocking-time in priority-inheritance protocol:

CS(k, S)

Use(S)

Bi =

X
{CS(k, S) | i, k 2 Use(S),⇡(k) < ⇡(i)}

Priority ceiling:

⇧(R)

⇧

0
(t)

⌦

2. REFERENCES

[l, u]r[l

0
, u

0
] =

"(
l : l

0 � l

max{x 2 J | x  l

0} : l

0
< l

,

(
u : u

0  u

min{x 2 J | x � u

0} : u

0
> u

#

x 7! [0, 0]

x 7! [0, 1]

x 7! [0, 1000]

y 7! [2, 2]

y 7! [2, 1000]

y 7! [2,1]

Fr(x) := xrF (x)

?  Fr(?)  F

2
r(?)  F

3
r(?)  . . .

?  F (?)  F

2
(?)  F

3
(?)  . . .

After narrowing:

x 7! [0, 1000]

x 7! [0, 999]

x 7! [1, 1000]

y 7! [2, 2000]

x 7! [1000, 1000]

y 7! [3, 2001]

Integrated Cache and Pipeline Analysis:

PS ! CS?

A tB = �p 2 PS.A(p) tCS B(p)

Concretization function for integrated analysis:

�(AS) :=

[

ps2PS

{hp, ci | p 2 �PS(ps) ^ c 2 �CS(AS(ps))}

�(AS) :=

[

ps2PS

�PS(ps) \ �CS(AS(ps))

F
r
e
q
u
e
n
c
y

Execution

time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

Timing compositionality:

T

pipeline, cache

(P, hp, ci) = T

pipeline

(P, hpi)� T

cache

(P, hci)
WCET

pipeline, cache

(P ) = max

p,c
T

pipeline, cache

(P, hp, ci)

 max

p
T

pipeline

(P, hpi)�max

c
T

cache

(P, hci)

= WCET

pipeline

(P ) +WCET

cache

(P )

Temporal isolation:

T (P1, hp1, c1, p2, c2i) = T (P1, hp1, c1, p02, c02i) = T

isolated

(P1, hp1, c2i)
T (P1, hp1, c1, p2, c2i) = T

isolated

(P1, hp1, c2i)

WCET(P1) = max

p1,c1,p2,c2
T (P1, hp1, c1, p2, c2i)

= max

p1,c1
T

isolated

(P1, hp1, c1i)

Blocking-time in priority-inheritance protocol:

CS(k, S)

Use(S)

Bi =

X
{CS(k, S) | i, k 2 Use(S),⇡(k) < ⇡(i)}

Priority ceiling:

⇧(R)

⇧

0
(t)

⌦

2. REFERENCES



Priority Ceiling Protocol: 
Runtime Behavior 

1.  Scheduling Rule: 
l  At time t when job J is released, the current priority         of J is 

its priority. 
l  Every ready job J is scheduled based on its current priority  

2.  Allocation Rule: When job J requests semaphore S at 
time t, one of the following conditions occur: 

l  S is held by another job and J becomes blocked. 
l  S is free: 

•  If J’s priority        is higher than the current priority ceiling        ,      
R is allocated to J. 

•  Otherwise, J becomes blocked. 

3.  Priority-Inheritance Rule: When J becomes blocked, the 
job Jl that blocks J inherits the current priority      of J until 
it releases every resource whose priority ceiling is         . 

 

[l, u]r[l

0
, u

0
] =

"(
l : l

0 � l

max{x 2 J | x  l

0} : l

0
< l

,

(
u : u

0  u

min{x 2 J | x � u

0} : u

0
> u

#

x 7! [0, 0]

x 7! [0, 1]

x 7! [0, 1000]

y 7! [2, 2]

y 7! [2, 1000]

y 7! [2,1]

Fr(x) := xrF (x)

?  Fr(?)  F

2
r(?)  F

3
r(?)  . . .

?  F (?)  F

2
(?)  F

3
(?)  . . .

After narrowing:

x 7! [0, 1000]

x 7! [0, 999]

x 7! [1, 1000]

y 7! [2, 2000]

x 7! [1000, 1000]

y 7! [3, 2001]

Integrated Cache and Pipeline Analysis:

PS ! CS?

A tB = �p 2 PS.A(p) tCS B(p)

Concretization function for integrated analysis:

�(AS) :=

[

ps2PS

{hp, ci | p 2 �PS(ps) ^ c 2 �CS(AS(ps))}

�(AS) :=

[

ps2PS

�PS(ps) \ �CS(AS(ps))

F
r
e
q
u
e
n
c
y

Execution

time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

Timing compositionality:

T

pipeline, cache

(P, hp, ci) = T

pipeline

(P, hpi)� T

cache

(P, hci)
WCET

pipeline, cache

(P ) = max

p,c
T

pipeline, cache

(P, hp, ci)

 max

p
T

pipeline

(P, hpi)�max

c
T

cache

(P, hci)

= WCET

pipeline

(P ) +WCET

cache

(P )

Temporal isolation:

T (P1, hp1, c1, p2, c2i) = T (P1, hp1, c1, p02, c02i) = T

isolated

(P1, hp1, c2i)
T (P1, hp1, c1, p2, c2i) = T

isolated

(P1, hp1, c2i)

WCET(P1) = max

p1,c1,p2,c2
T (P1, hp1, c1, p2, c2i)

= max

p1,c1
T

isolated

(P1, hp1, c1i)

Blocking-time in priority-inheritance protocol:

CS(k, S)

Use(S)

Bi =

X
{CS(k, S) | i, k 2 Use(S),⇡(k) < ⇡(i)}

Priority ceiling:

⇧(R)

⇧

0
(t)

⌦

⇡(t)

2. REFERENCES

[l, u]r[l

0
, u

0
] =

"(
l : l

0 � l

max{x 2 J | x  l

0} : l

0
< l

,

(
u : u

0  u

min{x 2 J | x � u

0} : u

0
> u

#

x 7! [0, 0]

x 7! [0, 1]

x 7! [0, 1000]

y 7! [2, 2]

y 7! [2, 1000]

y 7! [2,1]

Fr(x) := xrF (x)

?  Fr(?)  F

2
r(?)  F

3
r(?)  . . .

?  F (?)  F

2
(?)  F

3
(?)  . . .

After narrowing:

x 7! [0, 1000]

x 7! [0, 999]

x 7! [1, 1000]

y 7! [2, 2000]

x 7! [1000, 1000]

y 7! [3, 2001]

Integrated Cache and Pipeline Analysis:

PS ! CS?

A tB = �p 2 PS.A(p) tCS B(p)

Concretization function for integrated analysis:

�(AS) :=

[

ps2PS

{hp, ci | p 2 �PS(ps) ^ c 2 �CS(AS(ps))}

�(AS) :=

[

ps2PS

�PS(ps) \ �CS(AS(ps))

F
r
e
q
u
e
n
c
y

Execution

time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

Timing compositionality:

T

pipeline, cache

(P, hp, ci) = T

pipeline

(P, hpi)� T

cache

(P, hci)
WCET

pipeline, cache

(P ) = max

p,c
T

pipeline, cache

(P, hp, ci)

 max

p
T

pipeline

(P, hpi)�max

c
T

cache

(P, hci)

= WCET

pipeline

(P ) +WCET

cache

(P )

Temporal isolation:

T (P1, hp1, c1, p2, c2i) = T (P1, hp1, c1, p02, c02i) = T

isolated

(P1, hp1, c2i)
T (P1, hp1, c1, p2, c2i) = T

isolated

(P1, hp1, c2i)

WCET(P1) = max

p1,c1,p2,c2
T (P1, hp1, c1, p2, c2i)

= max

p1,c1
T

isolated

(P1, hp1, c1i)

Blocking-time in priority-inheritance protocol:

CS(k, S)

Use(S)

Bi =

X
{CS(k, S) | i, k 2 Use(S),⇡(k) < ⇡(i)}

Priority ceiling:

⇧(R)

⇧

0
(t)

2. REFERENCES

[l, u]r[l

0
, u

0
] =

"(
l : l

0 � l

max{x 2 J | x  l

0} : l

0
< l

,

(
u : u

0  u

min{x 2 J | x � u

0} : u

0
> u

#

x 7! [0, 0]

x 7! [0, 1]

x 7! [0, 1000]

y 7! [2, 2]

y 7! [2, 1000]

y 7! [2,1]

Fr(x) := xrF (x)

?  Fr(?)  F

2
r(?)  F

3
r(?)  . . .

?  F (?)  F

2
(?)  F

3
(?)  . . .

After narrowing:

x 7! [0, 1000]

x 7! [0, 999]

x 7! [1, 1000]

y 7! [2, 2000]

x 7! [1000, 1000]

y 7! [3, 2001]

Integrated Cache and Pipeline Analysis:

PS ! CS?

A tB = �p 2 PS.A(p) tCS B(p)

Concretization function for integrated analysis:

�(AS) :=

[

ps2PS

{hp, ci | p 2 �PS(ps) ^ c 2 �CS(AS(ps))}

�(AS) :=

[

ps2PS

�PS(ps) \ �CS(AS(ps))

F
r
e
q
u
e
n
c
y

Execution

time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

Timing compositionality:

T

pipeline, cache

(P, hp, ci) = T

pipeline

(P, hpi)� T

cache

(P, hci)
WCET

pipeline, cache

(P ) = max

p,c
T

pipeline, cache

(P, hp, ci)

 max

p
T

pipeline

(P, hpi)�max

c
T

cache

(P, hci)

= WCET

pipeline

(P ) +WCET

cache

(P )

Temporal isolation:

T (P1, hp1, c1, p2, c2i) = T (P1, hp1, c1, p02, c02i) = T

isolated

(P1, hp1, c2i)
T (P1, hp1, c1, p2, c2i) = T

isolated

(P1, hp1, c2i)

WCET(P1) = max

p1,c1,p2,c2
T (P1, hp1, c1, p2, c2i)

= max

p1,c1
T

isolated

(P1, hp1, c1i)

Blocking-time in priority-inheritance protocol:

CS(k, S)

Use(S)

Bi =

X
{CS(k, S) | i, k 2 Use(S),⇡(k) < ⇡(i)}

Priority ceiling:

⇧(R)

⇧

0
(t)

⌦

⇡(t)

2. REFERENCES

[l, u]r[l

0
, u

0
] =

"(
l : l

0 � l

max{x 2 J | x  l

0} : l

0
< l

,

(
u : u

0  u

min{x 2 J | x � u

0} : u

0
> u

#

x 7! [0, 0]

x 7! [0, 1]

x 7! [0, 1000]

y 7! [2, 2]

y 7! [2, 1000]

y 7! [2,1]

Fr(x) := xrF (x)

?  Fr(?)  F

2
r(?)  F

3
r(?)  . . .

?  F (?)  F

2
(?)  F

3
(?)  . . .

After narrowing:

x 7! [0, 1000]

x 7! [0, 999]

x 7! [1, 1000]

y 7! [2, 2000]

x 7! [1000, 1000]

y 7! [3, 2001]

Integrated Cache and Pipeline Analysis:

PS ! CS?

A tB = �p 2 PS.A(p) tCS B(p)

Concretization function for integrated analysis:

�(AS) :=

[

ps2PS

{hp, ci | p 2 �PS(ps) ^ c 2 �CS(AS(ps))}

�(AS) :=

[

ps2PS

�PS(ps) \ �CS(AS(ps))

F
r
e
q
u
e
n
c
y

Execution

time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

Timing compositionality:

T

pipeline, cache

(P, hp, ci) = T

pipeline

(P, hpi)� T

cache

(P, hci)
WCET

pipeline, cache

(P ) = max

p,c
T

pipeline, cache

(P, hp, ci)

 max

p
T

pipeline

(P, hpi)�max

c
T

cache

(P, hci)

= WCET

pipeline

(P ) +WCET

cache

(P )

Temporal isolation:

T (P1, hp1, c1, p2, c2i) = T (P1, hp1, c1, p02, c02i) = T

isolated

(P1, hp1, c2i)
T (P1, hp1, c1, p2, c2i) = T

isolated

(P1, hp1, c2i)

WCET(P1) = max

p1,c1,p2,c2
T (P1, hp1, c1, p2, c2i)

= max

p1,c1
T

isolated

(P1, hp1, c1i)

Blocking-time in priority-inheritance protocol:

CS(k, S)

Use(S)

Bi =

X
{CS(k, S) | i, k 2 Use(S),⇡(k) < ⇡(i)}

Priority ceiling:

⇧(R)

⇧

0
(t)

⌦

⇡(t)

2. REFERENCES

[l, u]r[l

0
, u

0
] =

"(
l : l

0 � l

max{x 2 J | x  l

0} : l

0
< l

,

(
u : u

0  u

min{x 2 J | x � u

0} : u

0
> u

#

x 7! [0, 0]

x 7! [0, 1]

x 7! [0, 1000]

y 7! [2, 2]

y 7! [2, 1000]

y 7! [2,1]

Fr(x) := xrF (x)

?  Fr(?)  F

2
r(?)  F

3
r(?)  . . .

?  F (?)  F

2
(?)  F

3
(?)  . . .

After narrowing:

x 7! [0, 1000]

x 7! [0, 999]

x 7! [1, 1000]

y 7! [2, 2000]

x 7! [1000, 1000]

y 7! [3, 2001]

Integrated Cache and Pipeline Analysis:

PS ! CS?

A tB = �p 2 PS.A(p) tCS B(p)

Concretization function for integrated analysis:

�(AS) :=

[

ps2PS

{hp, ci | p 2 �PS(ps) ^ c 2 �CS(AS(ps))}

�(AS) :=

[

ps2PS

�PS(ps) \ �CS(AS(ps))

F
r
e
q
u
e
n
c
y

Execution

time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

Timing compositionality:

T

pipeline, cache

(P, hp, ci) = T

pipeline

(P, hpi)� T

cache

(P, hci)
WCET

pipeline, cache

(P ) = max

p,c
T

pipeline, cache

(P, hp, ci)

 max

p
T

pipeline

(P, hpi)�max

c
T

cache

(P, hci)

= WCET

pipeline

(P ) +WCET

cache

(P )

Temporal isolation:

T (P1, hp1, c1, p2, c2i) = T (P1, hp1, c1, p02, c02i) = T

isolated

(P1, hp1, c2i)
T (P1, hp1, c1, p2, c2i) = T

isolated

(P1, hp1, c2i)

WCET(P1) = max

p1,c1,p2,c2
T (P1, hp1, c1, p2, c2i)

= max

p1,c1
T

isolated

(P1, hp1, c1i)

Blocking-time in priority-inheritance protocol:

CS(k, S)

Use(S)

Bi =

X
{CS(k, S) | i, k 2 Use(S),⇡(k) < ⇡(i)}

Priority ceiling:

⇧(R)

⇧

0
(t)

⌦

⇡(t)

� ⇡(t)

2. REFERENCES



Priority Ceiling Protocol: Example 

6

31

Summary

NPP BIP HLP

Bounded Priority Inversion yes yes yes

Avoid deadlock yes no yes

Avoid Un-necessary blocking no yes yes/no

Blocking time calculalation Easy hard easy

32

Priority Ceiling Protocol (combining HLP and BIP)

 Each semaphore S has a Ceiling  C(S) 
 Run-time behaviour:

 Assume that S is the semaphore with highest ceiling locked by 
other  tasks  currently:    C(S)  is  ”the  current  system  priority”

 If A wants to lock a semaphore (not necessarily S), it must have a 
strictly higher priority than C(S)  i.e.  P(A) > C(S). Otherwise A is 
blocked,  and it transmitts its priority(+) to the task currently  
holding S

33

Example: PCP

A: ...P(S1)...V(S1)...
B: ...P(S2)...P(S3)...V(S3)...V(S2)...
C: ...P(S3)...P(S2)...V(S2)...V(S3)

C(S1)=H
C(S2)=C(S3)=M

P(S3)

Run  with  B’s  priority  (+)

B arrives Blocked on S3P(S2)

P(S1) V(S1)

Get S2 P(S3) V(S3)V(S2)

P(S2) V(S2)V(S3)

Run with its own priority

Prio(A)=H
Prio(B)=M
Prio(C)=L

34

PCP:  Blocking time calculation

 Let 
 CS(k,S) denote the computing time for the critical section 

that  task k uses semaphore S.
 Use(S) is the set of tasks using S

 The maximal blocking time for task i:

 B = max{CS(k,S)| i,k in Use(S), pr(k)<pr(i)<=C(S)}

35

Exercise: implementation of PCP

 Implement P,V-operations that follow PCP
 (this is not so easy)

36

Properties of PCP: + and -

 Bounded priority inversion (+)
 Deadlock free (+)
 Number of blocking = 1 (+)
 Better response times for high priority tasks (+)

 Avoid un-necessary blocking

 Not easy to implement (-)

A 

B 

C 

Task A: … P(S1) … V(S1) … 
Task B: … P(S2) … P(S3) … V(S3) … V(S2) … 
Task C: … P(S3) … P(S2) … V(S2) … V(S3) … 



Beneficial Properties of PCP 

Theorem 1: Under PCP, no deadlock can occur. 
      Why? 

 
Theorem 2: A job can be blocked for at most the 
duration of one critical section. 

      Why? 
 
 



PCP: Blocking Time Calculation 

[l, u]r[l

0
, u

0
] =

"(
l : l

0 � l

max{x 2 J | x  l

0} : l

0
< l

,

(
u : u

0  u

min{x 2 J | x � u

0} : u

0
> u

#

x 7! [0, 0]

x 7! [0, 1]

x 7! [0, 1000]

y 7! [2, 2]

y 7! [2, 1000]

y 7! [2,1]

Fr(x) := xrF (x)

?  Fr(?)  F

2
r(?)  F

3
r(?)  . . .

?  F (?)  F

2
(?)  F

3
(?)  . . .

After narrowing:

x 7! [0, 1000]

x 7! [0, 999]

x 7! [1, 1000]

y 7! [2, 2000]

x 7! [1000, 1000]

y 7! [3, 2001]

Integrated Cache and Pipeline Analysis:

PS ! CS?

A tB = �p 2 PS.A(p) tCS B(p)

Concretization function for integrated analysis:

�(AS) :=

[

ps2PS

{hp, ci | p 2 �PS(ps) ^ c 2 �CS(AS(ps))}

�(AS) :=

[

ps2PS

�PS(ps) \ �CS(AS(ps))

F
r
e
q
u
e
n
c
y

Execution

time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

Timing compositionality:

T

pipeline, cache

(P, hp, ci) = T

pipeline

(P, hpi)� T

cache

(P, hci)
WCET

pipeline, cache

(P ) = max

p,c
T

pipeline, cache

(P, hp, ci)

 max

p
T

pipeline

(P, hpi)�max

c
T

cache

(P, hci)

= WCET

pipeline

(P ) +WCET

cache

(P )

Temporal isolation:

T (P1, hp1, c1, p2, c2i) = T (P1, hp1, c1, p02, c02i) = T

isolated

(P1, hp1, c2i)
T (P1, hp1, c1, p2, c2i) = T

isolated

(P1, hp1, c2i)

WCET(P1) = max

p1,c1,p2,c2
T (P1, hp1, c1, p2, c2i)

= max

p1,c1
T

isolated

(P1, hp1, c1i)

Blocking-time in priority-inheritance protocol:

CS(k, S)

Use(S)

Bi =

X
{CS(k, S) | i, k 2 Use(S),⇡(k) < ⇡(i)}

2. REFERENCES

[l, u]r[l

0
, u

0
] =

"(
l : l

0 � l

max{x 2 J | x  l

0} : l

0
< l

,

(
u : u

0  u

min{x 2 J | x � u

0} : u

0
> u

#

x 7! [0, 0]

x 7! [0, 1]

x 7! [0, 1000]

y 7! [2, 2]

y 7! [2, 1000]

y 7! [2,1]

Fr(x) := xrF (x)

?  Fr(?)  F

2
r(?)  F

3
r(?)  . . .

?  F (?)  F

2
(?)  F

3
(?)  . . .

After narrowing:

x 7! [0, 1000]

x 7! [0, 999]

x 7! [1, 1000]

y 7! [2, 2000]

x 7! [1000, 1000]

y 7! [3, 2001]

Integrated Cache and Pipeline Analysis:

PS ! CS?

A tB = �p 2 PS.A(p) tCS B(p)

Concretization function for integrated analysis:

�(AS) :=

[

ps2PS

{hp, ci | p 2 �PS(ps) ^ c 2 �CS(AS(ps))}

�(AS) :=

[

ps2PS

�PS(ps) \ �CS(AS(ps))

F
r
e
q
u
e
n
c
y

Execution

time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

Timing compositionality:

T

pipeline, cache

(P, hp, ci) = T

pipeline

(P, hpi)� T

cache

(P, hci)
WCET

pipeline, cache

(P ) = max

p,c
T

pipeline, cache

(P, hp, ci)

 max

p
T

pipeline

(P, hpi)�max

c
T

cache

(P, hci)

= WCET

pipeline

(P ) +WCET

cache

(P )

Temporal isolation:

T (P1, hp1, c1, p2, c2i) = T (P1, hp1, c1, p02, c02i) = T

isolated

(P1, hp1, c2i)
T (P1, hp1, c1, p2, c2i) = T

isolated

(P1, hp1, c2i)

WCET(P1) = max

p1,c1,p2,c2
T (P1, hp1, c1, p2, c2i)

= max

p1,c1
T

isolated

(P1, hp1, c1i)

Blocking-time in priority-inheritance protocol:

CS(k, S)

Use(S)

Bi =

X
{CS(k, S) | i, k 2 Use(S),⇡(k) < ⇡(i)}

2. REFERENCES

The set of tasks using semaphore S. 

The WCET of the critical section of 
task k using semaphore S. 

The maximal blocking time of task i under PIP: 

[l, u]r[l

0
, u

0
] =

"(
l : l

0 � l

max{x 2 J | x  l

0} : l

0
< l

,

(
u : u

0  u

min{x 2 J | x � u

0} : u

0
> u

#

x 7! [0, 0]

x 7! [0, 1]

x 7! [0, 1000]

y 7! [2, 2]

y 7! [2, 1000]

y 7! [2,1]

Fr(x) := xrF (x)

?  Fr(?)  F

2
r(?)  F

3
r(?)  . . .

?  F (?)  F

2
(?)  F

3
(?)  . . .

After narrowing:

x 7! [0, 1000]

x 7! [0, 999]

x 7! [1, 1000]

y 7! [2, 2000]

x 7! [1000, 1000]

y 7! [3, 2001]

Integrated Cache and Pipeline Analysis:

PS ! CS?

A tB = �p 2 PS.A(p) tCS B(p)

Concretization function for integrated analysis:

�(AS) :=

[

ps2PS

{hp, ci | p 2 �PS(ps) ^ c 2 �CS(AS(ps))}

�(AS) :=

[

ps2PS

�PS(ps) \ �CS(AS(ps))

F
r
e
q
u
e
n
c
y

Execution

time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

Timing compositionality:

T

pipeline, cache

(P, hp, ci) = T

pipeline

(P, hpi)� T

cache

(P, hci)
WCET

pipeline, cache

(P ) = max

p,c
T

pipeline, cache

(P, hp, ci)

 max

p
T

pipeline

(P, hpi)�max

c
T

cache

(P, hci)

= WCET

pipeline

(P ) +WCET

cache

(P )

Temporal isolation:

T (P1, hp1, c1, p2, c2i) = T (P1, hp1, c1, p02, c02i) = T

isolated

(P1, hp1, c2i)
T (P1, hp1, c1, p2, c2i) = T

isolated

(P1, hp1, c2i)

WCET(P1) = max

p1,c1,p2,c2
T (P1, hp1, c1, p2, c2i)

= max

p1,c1
T

isolated

(P1, hp1, c1i)

Blocking-time in priority-inheritance protocol:

CS(k, S)

Use(S)

B

PIP
i =

X
{CS(k, S) | i, k 2 Use(S),⇡(k) < ⇡(i)  ⇧(S)}

Priority ceiling:

⇧(R)

⇧

0
(t)

⌦

⇡(t)

� ⇡(t)

B

PCP
i = max{CS(k, S) | i, k 2 Use(S),⇡(k) < ⇡(i)  ⇧(S)}

2. REFERENCES



Priority Inheritance Protocol vs 
Priority Ceiling Protocol 

PIP PCP 
Bounded priority inversion (+) Bounded priority inversion (+) 
May deadlock (-) Deadlock-free (+) 
Up to n blockings (-) At most one blocking (+) 
Easy to implement (+) Not easy to implement (-) 



Schedulability Analysis including    
Blocking Times 

Theorem:  
A set of n periodic tasks under PCP can be 
scheduled by rate-monotonic scheduling, if 
 
 
where Bi is the worst-case blocking time of task i. 

[l, u]r[l

0
, u

0
] =

"(
l : l

0 � l

max{x 2 J | x  l

0} : l

0
< l

,

(
u : u

0  u

min{x 2 J | x � u

0} : u

0
> u

#

x 7! [0, 0]

x 7! [0, 1]

x 7! [0, 1000]

y 7! [2, 2]

y 7! [2, 1000]

y 7! [2,1]

Fr(x) := xrF (x)

?  Fr(?)  F

2
r(?)  F

3
r(?)  . . .

?  F (?)  F

2
(?)  F

3
(?)  . . .

After narrowing:

x 7! [0, 1000]

x 7! [0, 999]

x 7! [1, 1000]

y 7! [2, 2000]

x 7! [1000, 1000]

y 7! [3, 2001]

Integrated Cache and Pipeline Analysis:

PS ! CS?

A tB = �p 2 PS.A(p) tCS B(p)

Concretization function for integrated analysis:

�(AS) :=

[

ps2PS

{hp, ci | p 2 �PS(ps) ^ c 2 �CS(AS(ps))}

�(AS) :=

[

ps2PS

�PS(ps) \ �CS(AS(ps))

F
r
e
q
u
e
n
c
y

Execution

time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

Timing compositionality:

T

pipeline, cache

(P, hp, ci) = T

pipeline

(P, hpi)� T

cache

(P, hci)
WCET

pipeline, cache

(P ) = max

p,c
T

pipeline, cache

(P, hp, ci)

 max

p
T

pipeline

(P, hpi)�max

c
T

cache

(P, hci)

= WCET

pipeline

(P ) +WCET

cache

(P )

Temporal isolation:

T (P1, hp1, c1, p2, c2i) = T (P1, hp1, c1, p02, c02i) = T

isolated

(P1, hp1, c2i)
T (P1, hp1, c1, p2, c2i) = T

isolated

(P1, hp1, c2i)

WCET(P1) = max

p1,c1,p2,c2
T (P1, hp1, c1, p2, c2i)

= max

p1,c1
T

isolated

(P1, hp1, c1i)

Blocking-time in priority-inheritance protocol:

CS(k, S)

Use(S)

B

PIP
i =

X
{CS(k, S) | i, k 2 Use(S),⇡(k) < ⇡(i)  ⇧(S)}

Priority ceiling:

⇧(R)

⇧

0
(t)

⌦

⇡(t)

� ⇡(t)

B

PCP
i = max{CS(k, S) | i, k 2 Use(S),⇡(k) < ⇡(i)  ⇧(S)}

8i, 1  i  n,

Ci +Bi

Ti
+

i�1X

j=1

Cj

Tj
 i(2

1/i � 1)

2. REFERENCES



Summary 

¢  Resource sharing may cause priority inversion 
¢  Without further action, priority inversion may 

be very long 
¢  Priority inheritance and priority ceiling 

protocols bound the worst-case blocking time 
¢  Can be incorporated into schedulability 

analysis for rate-monotonic scheduling 


