Design and Analysis of

Real-Time Systems
Resource Sharing

Jan Reineke

Advanced Lecture, Summer 2013

Resource Sharing

o So far, we have assumed sets of independent
tasks.
o However, tasks may share resources

to communicate with each other, e.g. through
shared memory

because resources are sparse, e.g. I/O devices,
duplication would be expensive

o Need to ensure mutual exclusion

typically by protecting accesses to the shared
resource by semaphores

Resource Sharing

o Shared resources:
Data structures, variables, main

memory area, files, I/0 units, the 4)
processor, etc. = e | =
wait(5,) wait(Sy)

o Mutual exclusion, critical section

T use resource H, -l use resource R,

When a job enters a critical denallS) GenallS) |
section of a shared resource, @ = -
other jobs trying to enter a
critical section of the same
resource are blocked.

Resource Sharing Affects Scheduling and
Schedulability: Priority Inversion

Priority Inversion: a higher priority job is blocked
by a lower-priority job.

- normal execution
—-— critical section

Jy is blocked

, m s » I
szx:_cz Em

Priority Inversion: Another Example

-_— normal execution
- critical section

J1 is blocked by J3
J1 h priority inversion EnE

could be very long

Priority Inversion in the Real World:
Mars Pathfinder

Not long after Pathfinder started gathering
meteorological data, the spacecraft began
experiencing total system resets, each
resulting in losses of data.

Priority Inversion in the Real World:
Mars Pathfinder

“VxWorks provides preemptive priority scheduling of threads.
Tasks on the Pathfinder spacecraft were executed as threads
with priorities”

“Pathfinder contained an information bus, which you can think of
as a shared memory area used for passing information between
different components of the spacecraft.”

“A bus management task ran frequently with high priority to move
certain kinds of data in and out of the information bus. Access to
the bus was synchronized with mutual exclusion locks.”

o The meteorological data gathering task ran as an infrequent,
low priority thread, ... When publishing its data, it would
acquire a mutex, write to the bus, and release the mutex.

o It also had a communications task that ran with medium
priority.

Priority Inversion in the Real World:
Mars Pathfinder

High priority Medium priority Low priority
Data retrieval from Communication task Meteorological data
memory collection

“Most of the time this combination worked fine. However, very infrequently
it was possible for an interrupt to occur that caused the (medium priority)
communications task to be scheduled during the short interval while the
(high priority) information bus thread was blocked waiting for the (low
priority) meteorological data thread. In this case, the long-running
communications task, having higher priority than the meteorological task,
would prevent it from running, consequently preventing the blocked
information bus task from running. After some time had passed, a
watchdog timer would go off, notice that the data bus task had not been
executed for some time, conclude that something had gone drastically
wrong, and initiate a total system reset.”

Naive solution for Priority Inversion

Disallow preemption during critical sections
o Itis simple.
o No deadlocks. Why?

o A high-priority task is blocked for at most one
critical section. Why?

o But: it creates unnecessary blocking. Why?

—-— normal execution
— critical section

R

Resource Access Protocols

o Basic ldea:

Modify (increase) the priority of those jobs that
cause blocking.

When a job J; blocks one or more higher-priority
tasks, it temporarily assumes a higher priority.

o Methods:
Priority Inheritance Protocol (PIP), for fixed-
priority scheduling
Priority Ceiling Protocol (PCP), for fixed-priority
scheduling

Stack Resource Policy (SRP), for both fixed-
and dynamic-priority scheduling

Priority Inheritance Protocol (PIP)

When a lower priority job J; blocks a higher-priority job,
the priority of J; is promoted to the priority level of the
highest-priority job that job J; blocks.

For example, if the priority orderis J, > J, > J; > J, > J;,
o When job J, blocks jobs J, and J,, the priority of J, is
promoted to the priority level of J,.

o When job J; blocks J, and Js, its priority level is
promoted to the priority level of J,.

Priority inheritance solved the Mars Pathfinder problem:
the VxWorks operating system used in the pathfinder
implements priority inheritance. The software was shipped
with priority inheritance turned off.

Example of PIP

- normal execution
— critical section

E j Jq is blocked by Js
J1 : : : : ;

ty: J, arrives and preempts J,

t,: J, attempts to enter the critical section. J, is blocked by
J; and J; inherits J,’s priority

t,: J, arrives, but has a lower priority than J,

t;: J5 leaves its critical section, and J, now preempts J,;

Weaknesses of PIP

Blocking in PIP:

o Direct blocking: higher-priority job tries to acquire a
resource held by a lower-priority job

o Push-through blocking: a medium-priority job is blocked by
a lower-priority job that has inherited a higher priority

Problems of PIP:
o PIP might cause deadlock if there are multiple resources:

RfJ h block due to resource access R
1

B critical section R;
B ormal execution J block due to resource access R,
2

o Under PIP, if there are n lower-priority jobs, a higher-priority
job can be blocked for the duration of n critical sections:
Chained blocking

PIP: Chained Blocking

V(S1)
P(S1) P(S2) V(S2)
" ‘:H—i _ Task 1
e &R -
" Task 2
P(S2)
. | 3-’V(SZ)
L > Task 3
B Blocked
Higher-priority task can be blocked Using S1

by each lower-priority task!

Using S2

PIP: Blocking-Time Calculation

Useg(S) The set of tasks using semaphore S.

CS(k,S) The WCET of the critical section of
task k using semaphore S.

The maximal blocking time of task | under PIP:
Y0

B”'"" = {max{CS(k,S) | k # Use(S)}| #(k) < #(i)}

Improvement:
Priority Ceiling Protocol (PCP)

o Two key assumptions:
The assigned priorities of all jobs are fixed.

The resources required by all jobs are known a
priori, i.e., before the execution of any job begins.

o Definition: the priority ceiling of a semaphore R is
the highest priority of all the jobs that use R, and
is denoted ! (R)

o Definition: The current priority ceiling ! '(t) of the
system is equal to the highest priority ceiling of
the semaphores in use at time t, or {2 if no
resources are in use at time t. ({2is less than all
other priorities.)

Priority Ceiling Protocol:
Runtime Behavior

Scheduling Rule:

At time t when job J is released, the current priority 7(t) of J is

its priority.

Every ready job J is scheduled based on its current priority
Allocation Rule: When job J requests semaphore S at
time t, one of the following conditions occuir:

S is held by another job and J becomes blocked.

S is free:
If J's priority 7(t) is higher than the current priority ceiling! '(t),
R is allocated to J.
Otherwise, J becomes blocked.
Priority-Inheritance Rule: When J becomes blocked, the
job J, that blocks J inherits the current priority 7(t) of J until
it releases every resource whose priority ceiling is > ().

Priority Ceiling Protocol: Example

Task A: ' P(S1) ' V(S1) !
Task B: ' P(S2) P(S3) ' V(S3) ' V(52) !
Task C: ! P(S3) I P(S2) ' V(S2) ' V(S3) !

+F$#G SF$#HG

V364DHF"G SFS"
0,<3240145" ! 4% " $ SFS'GSFSDG

A((5738 TROG

FE$'G +F$DG SFDSF'G

T
5X0Q ZLWK %YV IS UL R U [%AASGECA56840K14H(E

Beneficial Properties of PCP

Theorem 1: Under PCP, no deadlock can occur.
Why?

Theorem 2: A job can be blocked for at most the
duration of one critical section.

Why?

PCP: Blocking Time Calculation

Useg(S) The set of tasks using semaphore S.

CS(k,S) The WCET of the critical section of
task k using semaphore S.

The maximal blocking time of task | under PIP:
B “" =max{CS(k,S) |ik # Use(S),#(k) < #(i)$! (S)}

Priority Inheritance Protocol vs
Priority Ceiling Protocol

PIP PCP

May deadlock (-) Deadlock-free (+)

Easy to implement (+) Not easy to implement (-)

Schedulability Analysis including
Blocking Times

Theorem:

A set of n periodic tasks under PCP can be

scheduled by rate-monotonic scheduling, if
1—1

i + B a1/
v¢,1§ign,C‘Ti +Z%gz(21/—1)

j=1
where B, is the worst-case blocking time of task i.

Summary

o Resource sharing may cause priority inversion

o Without further action, priority inversion may
be very long

o Priority inheritance and priority ceiling
protocols bound the worst-case blocking time

o Can be incorporated into schedulability
analysis for rate-monotonic scheduling

