
Design and Analysis of
Real-Time Systems
Predictability and
Predictable Microarchitectures

Jan Reineke

Advanced Lecture, Summer 2013

Notion of Predictability

Oxford Dictionary:
¢  predictable = adjective, able to be predicted
¢  to predict = verb, state that a specified event

will happen in the future

Fuzzy term in the WCET community.
May refer to the ability to predict:
¢  the WCET precisely,
¢  the execution time precisely,
¢  the WCET efficiently.

Notion of Predictability

Oxford Dictionary:
¢  predictable = adjective, able to be predicted
¢  to predict = verb, state that a specified event

will happen in the future

Fuzzy term in the WCET community.
May refer to the ability to predict:
¢  the WCET precisely,
¢  the execution time precisely,
¢  the WCET efficiently.

How are these related?

Ability to predict the WCET precisely

In theory we can precisely “predict” (rather:
determine) the WCET of most systems:

l  enumerate all inputs
l  enumerate all initial states of microarchitecture
l  enumerate all possible environments

However, this is of course not feasible in practice.
 à Predictability of WCET is not the “right goal”

Contrast with ability to predict execution time:
 à Related to variability in execution times

Variability of Execution Times

[l, u]r[l

0
, u

0
] =

"(
l : l

0 � l

max{x 2 J | x l

0} : l

0
< l

,

(
u : u

0 u

min{x 2 J | x � u

0} : u

0
> u

#

x 7! [0, 0]

x 7! [0, 1]

x 7! [0, 1000]

y 7! [2, 2]

y 7! [2, 1000]

y 7! [2,1]

Fr(x) := xrF (x)

? Fr(?) F

2
r(?) F

3
r(?) . . .

? F (?) F

2
(?) F

3
(?) . . .

After narrowing:

x 7! [0, 1000]

x 7! [0, 999]

x 7! [1, 1000]

y 7! [2, 2000]

x 7! [1000, 1000]

y 7! [3, 2001]

Integrated Cache and Pipeline Analysis:

PS ! CS?

A tB = �p 2 PS.A(p) tCS B(p)

Concretization function for integrated analysis:

�(AS) :=

[

ps2PS

{hp, ci | p 2 �PS(ps) ^ c 2 �CS(AS(ps))}

�(AS) :=

[

ps2PS

�PS(ps) \ �CS(AS(ps))

F
r
e
q
u
e
n
c
y

Execution

time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

2. REFERENCESRelated to predictability of execution time.

How close to WCET can we
safely push UB with
“reasonable” analysis effort?

Notion of Predictability

Fuzzy term in the WCET community.
May refer to the ability to predict:
¢  the WCET precisely,
¢  the execution time precisely

 à execution-time predictability
¢  the WCET efficiently

 à analyzability

Challenges to Timing Predictability

Uncertainty about
¢  program inputs,
¢  initial state of microarchitecture, and
¢  activity in environment (e.g. other cores in multi-core),

resulting in interference
à  introduces variability in execution times,

thus decreases execution-time predictability.
à  introduces non-determinism in analysis,

thus decreases analyzability.

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex
CPU

L1
Cache

Complex
CPU

L1
Cache

...
L2

Cache
Main

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

Two Ways to Increase Predictability

1.  Reduce uncertainty.
2.  Reduce influence of uncertainty on

a.  Variability of execution times, and/or
b.  Analysis efficiency.

1. Reduce Uncertainty

¢  Reduce number of program inputs?
Difficult…

¢  Reduce number of micro-architectural states:
E.g. eliminate branch predictor, cache, out-of-
order execution…

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex
CPU

L1
Cache

Complex
CPU

L1
Cache

...
L2

Cache
Main

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex CPU
(out-of-order
execution,

branch
prediction, etc.)

Main
Memory

L1
Cache

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Simple
CPU

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

1. Reduce Uncertainty

¢  Reduce number of program inputs?
Difficult…

¢  Reduce number of micro-architectural states:
E.g. eliminate branch predictor, cache, out-of-
order execution…

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex
CPU

L1
Cache

Complex
CPU

L1
Cache

...
L2

Cache
Main

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex CPU
(out-of-order
execution,

branch
prediction, etc.)

Main
Memory

L1
Cache

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Simple
CPU

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

If done naively: Reverses many micro-architectural developments…
 à Decreases performance…

Key question: How to reduce uncertainty without sacrificing performance?

2.a) Reducing Influence of Uncertainty on
Variability of Execution Times

If a source of uncertainty has no influence on
execution times, it is irrelevant for timing analysis.

Example: Temporal Isolation

Temporal Isolation

¢  Temporal isolation between cores =
timing of program on one core is independent of
activity on other cores
¢  Formally:

¢  Can be exploited in WCET analysis:

[l, u]r[l

0
, u

0
] =

"(
l : l

0 � l

max{x 2 J | x l

0} : l

0
< l

,

(
u : u

0 u

min{x 2 J | x � u

0} : u

0
> u

#

x 7! [0, 0]

x 7! [0, 1]

x 7! [0, 1000]

y 7! [2, 2]

y 7! [2, 1000]

y 7! [2,1]

Fr(x) := xrF (x)

? Fr(?) F

2
r(?) F

3
r(?) . . .

? F (?) F

2
(?) F

3
(?) . . .

After narrowing:

x 7! [0, 1000]

x 7! [0, 999]

x 7! [1, 1000]

y 7! [2, 2000]

x 7! [1000, 1000]

y 7! [3, 2001]

Integrated Cache and Pipeline Analysis:

PS ! CS?

A tB = �p 2 PS.A(p) tCS B(p)

Concretization function for integrated analysis:

�(AS) :=

[

ps2PS

{hp, ci | p 2 �PS(ps) ^ c 2 �CS(AS(ps))}

�(AS) :=

[

ps2PS

�PS(ps) \ �CS(AS(ps))

F
r
e
q
u
e
n
c
y

Execution

time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

Timing compositionality:

T

pipeline, cache

(P, hp, ci) = T

pipeline

(P, hpi)� T

cache

(P, hci)
WCET

pipeline, cache

(P) = max

p,c
T

pipeline, cache

(P, hp, ci)

 max

p
T

pipeline

(P, hpi)�max

c
T

cache

(P, hci)

= WCET

pipeline

(P) +WCET

cache

(P)

Temporal isolation:

T (P1, hp1, c1, p2, c2i) = T (P1, hp1, c1, p02, c02i) = T

isolated

(P1, hp1, c2i)
T (P1, hp1, c1, p2, c2i) = T

isolated

(P1, hp1, c2i)

WCET(P1) = max

p1,c1,p2,c2
T (P1, hp1, c1, p2, c2i)

= max

p1,c1
T

isolated

(P1, hp1, c1i)

2. REFERENCES

[l, u]r[l

0
, u

0
] =

"(
l : l

0 � l

max{x 2 J | x l

0} : l

0
< l

,

(
u : u

0 u

min{x 2 J | x � u

0} : u

0
> u

#

x 7! [0, 0]

x 7! [0, 1]

x 7! [0, 1000]

y 7! [2, 2]

y 7! [2, 1000]

y 7! [2,1]

Fr(x) := xrF (x)

? Fr(?) F

2
r(?) F

3
r(?) . . .

? F (?) F

2
(?) F

3
(?) . . .

After narrowing:

x 7! [0, 1000]

x 7! [0, 999]

x 7! [1, 1000]

y 7! [2, 2000]

x 7! [1000, 1000]

y 7! [3, 2001]

Integrated Cache and Pipeline Analysis:

PS ! CS?

A tB = �p 2 PS.A(p) tCS B(p)

Concretization function for integrated analysis:

�(AS) :=

[

ps2PS

{hp, ci | p 2 �PS(ps) ^ c 2 �CS(AS(ps))}

�(AS) :=

[

ps2PS

�PS(ps) \ �CS(AS(ps))

F
r
e
q
u
e
n
c
y

Execution

time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

Timing compositionality:

T

pipeline, cache

(P, hp, ci) = T

pipeline

(P, hpi)� T

cache

(P, hci)
WCET

pipeline, cache

(P) = max

p,c
T

pipeline, cache

(P, hp, ci)

 max

p
T

pipeline

(P, hpi)�max

c
T

cache

(P, hci)

= WCET

pipeline

(P) +WCET

cache

(P)

Temporal isolation:

T (P1, hp1, c1, p2, c2i) = T (P1, hp1, c1, p02, c02i) = T

isolated

(P1, hp1, c2i)
T (P1, hp1, c1, p2, c2i) = T

isolated

(P1, hp1, c2i)

WCET(P1) = max

p1,c1,p2,c2
T (P1, hp1, c1, p2, c2i)

= max

p1,c1
T

isolated

(P1, hp1, c1i)

2. REFERENCES

Temporal Isolation
How to achieve it?

¢  Partition resources in space and/or time
l  Resource appears like a slower and/or smaller

private resource to each client
¢  Examples:

l  Time-division multiple access (TDMA) arbitration
in shared busses

l  Partitioned shared caches

¢  Why not simply provide private resources then?

2.b) Reducing Influence of Uncertainty on
Analysis Efficiency
Does non-determinism have to be a problem for
analyzability?
à  Timing Anomalies
à  Domino Effects
à  Lack of Timing Compositionality

¢  Eliminate Timing Anomalies,
e.g. stall pipeline on cache miss and use LRU.

¢  Eliminate Domino Effects
e.g. use LRU rather than FIFO.

Timing Anomalies

Timing Anomaly = Counterintuitive scenario in
which the “local worst case” does not imply
the “global worst case”.

Example: Scheduling Anomaly

A

A

Resource 1

Resource 2

Resource 1

Resource 2

C

B C

B

D E

D E

C ready

Bounds on multiprocessing timing anomalies
RL Graham - SIAM Journal on Applied Mathematics, 1969 – SIAM
(http://epubs.siam.org/doi/abs/10.1137/0117039)

Recommended
literature:

Timing Anomalies
Example: Speculation Anomaly

A

A

Cache Miss

Cache Hit

C

Branch Condition
Evaluated

Prefetch B - Miss C

Prefetching as branch
condition has not been
evaluated yet

No prefetching as branch
condition has already
been evaluated yet

Timing Anomalies
Example: Speculation Anomaly

A

A

Cache Miss

Cache Hit

C

Branch Condition
Evaluated

Prefetch B - Miss C

Prefetching as branch
condition has not been
evaluated yet

No prefetching as branch
condition has already
been evaluated yet

Memory access may
induce additional
cache misses later on

Timing Anomalies
Example: Cache Timing Anomaly of FIFO

[a, ?]
[a, b]

[b, a]

[c, a]

b Access:

hit

miss
[c, b]

c

miss

miss

[b, c]

[c, b]

b

miss

hit

[d, b]

[d, c]

d

miss

miss

[c, d]

[d, c]

c

miss

hit

4 Misses

3 Misses

Similar examples exist for PLRU and MRU.
Impossible for LRU.

Timing Anomalies
Example: Cache Timing Anomaly of FIFO

[a, ?]
[a, b]

[b, a]

[c, a]

b Access:

hit

miss
[c, b]

c

miss

miss

[b, c]

[c, b]

b

miss

hit

[d, b]

[d, c]

d

miss

miss

[c, d]

[d, c]

c

miss

hit

4 Misses

3 Misses

Local worst case

Similar examples exist for PLRU and MRU.
Impossible for LRU.

Timing Anomalies
Example: Cache Timing Anomaly of FIFO

[a, ?]
[a, b]

[b, a]

[c, a]

b Access:

hit

miss
[c, b]

c

miss

miss

[b, c]

[c, b]

b

miss

hit

[d, b]

[d, c]

d

miss

miss

[c, d]

[d, c]

c

miss

hit

4 Misses

3 Misses

Local worst case

Global worst case

Similar examples exist for PLRU and MRU.
Impossible for LRU.

Timing Anomalies
Consequences for Timing Analysis

In the presence of timing anomalies, a
timing analysis cannot make decisions “locally”:
it needs to consider all cases.
à  May yield “State explosion problem”

computer science

saarland
universityState-of-the-art: Integrated WCET Analysis

Drawback Efficiency

Timing Anomalies hinder state space reduction

Sebastian Hahn Timing Compositionality 19 June 2013 6 / 19

Timing Anomalies
Open Analysis and Design Challenges

¢  How to determine whether a given timing
model exhibits timing anomalies?

¢  How to construct processors without timing
anomalies?
l  Caches: LRU replacement
l  No speculation
l  Other aspects: “halt” everything upon every

“timing accident” à possibly very inefficient
¢  How to construct conservative timing model

without timing anomalies?
l  Can we e.g. add a “safety margin” to the local

worst case?

Domino Effects

¢  Intuitively:
domino effect = “unbounded” timing anomaly

¢  Examples:
l  Pipeline (e.g. PowerPC 755)
l  Caches (FIFO, PLRU, MRU, …)

Domino Effects
Example: Cache Domino Effect of FIFO

[a, ?]
[a, b]

[b, a]

[c, a]

b Access:

hit

miss
[c, b]

c

miss

miss

[b, c]

[c, b]

b

miss

hit

[d, b]

[d, c]

d

miss

miss

[c, d]

[d, c]

c

miss

hit

4 Misses

3 Misses

Similar examples exist for PLRU and MRU.
Impossible for LRU.

Domino Effects
Example: Cache Domino Effect of FIFO

[a, ?]
[a, b]

[b, a]

[c, a]

b Access:

hit

miss
[c, b]

c

miss

miss

[b, c]

[c, b]

b

miss

hit

[d, b]

[d, c]

d

miss

miss

[c, d]

[d, c]

c

miss

hit

4 Misses

3 Misses

Similar examples exist for PLRU and MRU.
Impossible for LRU.

[c, d]

[d, c]

[a, c]

[a, d]

a
miss

miss

[d, a]

[a, d]

d
miss

hit

[b, d]

[b, a]

b
miss

miss

[a, b]

[b, a]

a
miss

hit

4 Misses

3 Misses

Access:

Domino Effects
Example: Cache Domino Effect of FIFO

[a, ?]
[a, b]

[b, a]

[c, a]

b Access:

hit

miss
[c, b]

c

miss

miss

[b, c]

[c, b]

b

miss

hit

[d, b]

[d, c]

d

miss

miss

[c, d]

[d, c]

c

miss

hit

4 Misses

3 Misses

Similar examples exist for PLRU and MRU.
Impossible for LRU.

[c, d]

[d, c]

[a, c]

[a, d]

a
miss

miss

[d, a]

[a, d]

d
miss

hit

[b, d]

[b, a]

b
miss

miss

[a, b]

[b, a]

a
miss

hit

4 Misses

3 Misses

Access:

Domino Effects
Example: Cache Domino Effect of FIFO

[a, ?]
[a, b]

[b, a]

[c, a]

b Access:

hit

miss
[c, b]

c

miss

miss

[b, c]

[c, b]

b

miss

hit

[d, b]

[d, c]

d

miss

miss

[c, d]

[d, c]

c

miss

hit

4 Misses

3 Misses

Similar examples exist for PLRU and MRU.
Impossible for LRU.

[c, d]

[d, c]

[a, c]

[a, d]

a
miss

miss

[d, a]

[a, d]

d
miss

hit

[b, d]

[b, a]

b
miss

miss

[a, b]

[b, a]

a
miss

hit

4 Misses

3 Misses

Access:

Domino Effects
Example: FIFO Cache

[a,b,c,d]
[b,a,e,d]

[e,a,b,c]
[b,a,e,d]

[d,e,a,b]
[b,a,e,d]

[f,d,e,a]
[f,b,a,e]

[b,f,d,e]
[f,b,a,e]

e d f b 1.
2.

1.
2.

Hit/
Miss

M
H

M
H

M
M

M
H

Equal up to renaming à Can extend this sequence arbitrarily

4 Misses
1 Miss

Similar examples exist for PLRU and MRU.
Impossible for LRU.

Domino Effects
Open Analysis and Design Challenges

Exactly as with timing anomalies:
¢  How to determine whether a given timing

model exhibits domino effects?
¢  How to construct processors without domino

effects?
¢  How to construct conservative timing model

without domino effects?

Timing Compositionality
Motivation

¢  Some timing accidents are hard or
even impossible to statically exclude at
any particular program point:
l  Interference on a shared bus:

depends on behavior of tasks
executed on other cores

l  Interference on a cache in
preemptively scheduled systems

l  DRAM refreshes
¢  But it may be possible to make

cumulative statements about the
number of these accidents

computer science

saarland
universityWhat does the execution time depend on?

1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.

Complex
CPU

L1
Cache

Complex
CPU

L1
Cache

...
L2

Cache
Main

Memory

Jan Reineke Timing Analysis and Timing Predictability 11. Februar 2013 6 / 38

Timing Compositionality
Intuitive Meaning

¢  Timing of a program can be decomposed into
contributions by different “components”, e.g.
l  Pipeline
l  Cache non-preempted
l  Cache-related preemption delay
l  Bus interference
l  DRAM refreshes
l …

¢  Example, decomposition into pipeline and cache

[l, u]r[l

0
, u

0
] =

"(
l : l

0 � l

max{x 2 J | x l

0} : l

0
< l

,

(
u : u

0 u

min{x 2 J | x � u

0} : u

0
> u

#

x 7! [0, 0]

x 7! [0, 1]

x 7! [0, 1000]

y 7! [2, 2]

y 7! [2, 1000]

y 7! [2,1]

Fr(x) := xrF (x)

? Fr(?) F

2
r(?) F

3
r(?) . . .

? F (?) F

2
(?) F

3
(?) . . .

After narrowing:

x 7! [0, 1000]

x 7! [0, 999]

x 7! [1, 1000]

y 7! [2, 2000]

x 7! [1000, 1000]

y 7! [3, 2001]

Integrated Cache and Pipeline Analysis:

PS ! CS?

A tB = �p 2 PS.A(p) tCS B(p)

Concretization function for integrated analysis:

�(AS) :=

[

ps2PS

{hp, ci | p 2 �PS(ps) ^ c 2 �CS(AS(ps))}

�(AS) :=

[

ps2PS

�PS(ps) \ �CS(AS(ps))

F
r
e
q
u
e
n
c
y

Execution

time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

Timing compositionality:

Tpipeline, cache(P, hp, ci) = Tpipeline(P, hpi)� Tcache(P, hci)
WCETpipeline, cache(P, hp, ci) = max

p,c
Tpipeline, cache(P, hp, ci)

 max

p
Tpipeline(P, hpi)�max

c
Tcache(P, hci)

2. REFERENCES

Timing Compositionality
Application in Timing Analysis

Then, the components (here: pipeline and cache)
can also be analyzed separately:

[l, u]r[l

0
, u

0
] =

"(
l : l

0 � l

max{x 2 J | x l

0} : l

0
< l

,

(
u : u

0 u

min{x 2 J | x � u

0} : u

0
> u

#

x 7! [0, 0]

x 7! [0, 1]

x 7! [0, 1000]

y 7! [2, 2]

y 7! [2, 1000]

y 7! [2,1]

Fr(x) := xrF (x)

? Fr(?) F

2
r(?) F

3
r(?) . . .

? F (?) F

2
(?) F

3
(?) . . .

After narrowing:

x 7! [0, 1000]

x 7! [0, 999]

x 7! [1, 1000]

y 7! [2, 2000]

x 7! [1000, 1000]

y 7! [3, 2001]

Integrated Cache and Pipeline Analysis:

PS ! CS?

A tB = �p 2 PS.A(p) tCS B(p)

Concretization function for integrated analysis:

�(AS) :=

[

ps2PS

{hp, ci | p 2 �PS(ps) ^ c 2 �CS(AS(ps))}

�(AS) :=

[

ps2PS

�PS(ps) \ �CS(AS(ps))

F
r
e
q
u
e
n
c
y

Execution

time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

Timing compositionality:

Tpipeline, cache(P, hp, ci) = Tpipeline(P, hpi)� Tcache(P, hci)
WCETpipeline, cache(P) = max

p,c
Tpipeline, cache(P, hp, ci)

 max

p
Tpipeline(P, hpi)�max

c
Tcache(P, hci)

= WCETpipeline(P) +WCETcache(P)

2. REFERENCES

Timing Compositionality
Example: “Cache-aware” Response-Time Analysis

In preemptive scheduling, preempting tasks may
“disturb” the cache contents of preempted tasks:

computer science

saarland
universityPreemptively Scheduled Systems [Altmeyer et al.]

Response Time of Task 2

t

T2

T1

a

T1
d

T 1

a

T 2
d

T 2

1 Worst-case execution time of task 2 without preemptions: C2

2 Worst-case execution time of task 1 without preemptions: C1

3 Additional cost of task 1 preempting task 2: �1,2 = #add. misses · BRT

) R2 C2 +#preemptions · (C1 + �1,2)

Sebastian Hahn Timing Compositionality 19 June 2013 10 / 19

Timing Compositionality
Example: “Cache-aware” Response-Time Analysis

In preemptive scheduling, preempting tasks may
“disturb” the cache contents of preempted tasks:

computer science

saarland
universityPreemptively Scheduled Systems [Altmeyer et al.]

Response Time of Task 2

t

T2

T1

a

T1
d

T 1

a

T 2
d

T 2

1 Worst-case execution time of task 2 without preemptions: C2

2 Worst-case execution time of task 1 without preemptions: C1

3 Additional cost of task 1 preempting task 2: �1,2 = #add. misses · BRT

) R2 C2 +#preemptions · (C1 + �1,2)

Sebastian Hahn Timing Compositionality 19 June 2013 10 / 19

Additional misses due to preemption, referred to as
the Cache-Related Preemption Delay (CRPD).

computer science

saarland
universityPreemptively Scheduled Systems [Altmeyer et al.]

Response Time of Task 2

t

T2

T1

a

T1
d

T 1

a

T 2
d

T 2

1 Worst-case execution time of task 2 without preemptions: C2

2 Worst-case execution time of task 1 without preemptions: C1

3 Additional cost of task 1 preempting task 2: �1,2 = #add. misses · BRT

) R2 C2 +#preemptions · (C1 + �1,2)

Sebastian Hahn Timing Compositionality 19 June 2013 10 / 19

Timing Compositionality
Example: “Cache-aware” Response-Time Analysis

Timing decomposition:
¢  WCET of T1 without preemptions: C1
¢  WCET of T2 without preemptions: C2
¢  Additional cost of T1 preempting T2:

 CRPD1,2 = BRT * #additional misses
à  Response time of T2:

R2 ≤ C2 + #preemptions × (C1 + CRPD1,2)

Timing Compositionality
Open Analysis and Design Challenges

¢  How to check whether a given decomposition
of a timing model is valid?

¢  How to compute bounds on the cost of
individual events, such as cache misses (BRT
in previous example) or bus stalls?

¢  How to build microarchitecture in a way that
permits a sound and precise decomposition of
its timing?

Summary:
Approaches to Increase Predictability

Uncertainty
about Inputs

Program inputs
Initial state of microarchitecture
Tasks on other cores

Possible
Executions

Analysis
Efficiency

Reduce size by
simplifying
microarchitecture, e.g.
eliminate cache,
branch prediction, etc.

Reduce influence
of uncertainty on
executions, e.g. by
temporal isolation

Decouple analysis efficiency from
number of executions:
•  Eliminate timing anomalies and

domino effects,
•  Achieve timing compositionality
e.g. by LRU replacement, stalling
pipeline upon cache miss

Summary

¢  (Fuzzy) notions of timing predictability
¢  Important related notions:

l  Timing anomalies
l  Domino effects
l  Timing compositionality
l  Temporal isolation

¢  Two ways of increasing predictability:
1.  Reduce uncertainty
2.  Reduce influence of uncertainty

