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Notion of Predictability 

Oxford Dictionary: 
¢  predictable = adjective, able to be predicted 
¢  to predict = verb, state that a specified event 

will happen in the future 
 

Fuzzy term in the WCET community.  
May refer to the ability to predict: 
¢  the WCET precisely, 
¢  the execution time precisely, 
¢  the WCET efficiently. 
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How are these related? 



Ability to predict the WCET precisely 

In theory we can precisely “predict” (rather: 
determine) the WCET of most systems: 

l  enumerate all inputs 
l  enumerate all initial states of microarchitecture 
l  enumerate all possible environments 

However, this is of course not feasible in practice. 
   à Predictability of WCET is not the “right goal” 
 
Contrast with ability to predict execution time: 
   à Related to variability in execution times 



Variability of Execution Times 
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Integrated Cache and Pipeline Analysis:

PS ! CS?

A tB = �p 2 PS.A(p) tCS B(p)
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2. REFERENCESRelated to predictability of execution time. 

How close to WCET can we 
safely push UB with 
“reasonable” analysis effort? 



Notion of Predictability 

Fuzzy term in the WCET community.  
May refer to the ability to predict: 
¢  the WCET precisely, 
¢  the execution time precisely    

 à execution-time predictability  
¢  the WCET efficiently     

 à analyzability 



Challenges to Timing Predictability 

Uncertainty about  
¢  program inputs, 
¢  initial state of microarchitecture, and 
¢  activity in environment (e.g. other cores in multi-core), 

resulting in interference 
à  introduces variability in execution times,  

thus decreases execution-time predictability. 
à  introduces non-determinism in analysis, 

thus decreases analyzability. 
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1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.
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Two Ways to Increase Predictability 

1.  Reduce uncertainty. 
2.  Reduce influence of uncertainty on 

a.  Variability of execution times, and/or 
b.  Analysis efficiency. 



1. Reduce Uncertainty 

¢  Reduce number of program inputs?  
Difficult…  

¢  Reduce number of micro-architectural states: 
E.g. eliminate branch predictor, cache, out-of-
order execution… 
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If done naively: Reverses many micro-architectural developments… 
  à Decreases performance… 

Key question: How to reduce uncertainty without sacrificing performance? 



2.a) Reducing Influence of Uncertainty on 
Variability of Execution Times 

If a source of uncertainty has no influence on 
execution times, it is irrelevant for timing analysis. 
 
Example: Temporal Isolation 



Temporal Isolation 

¢  Temporal isolation between cores =  
timing of program on one core is independent of 
activity on other cores 
¢  Formally: 

¢  Can be exploited in WCET analysis: 
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Temporal Isolation 
How to achieve it? 

¢  Partition resources in space and/or time 
l  Resource appears like a slower and/or smaller 

private resource to each client 
¢  Examples: 

l  Time-division multiple access (TDMA) arbitration 
in shared busses 

l  Partitioned shared caches 

¢  Why not simply provide private resources then? 



2.b) Reducing Influence of Uncertainty on 
Analysis Efficiency 
Does non-determinism have to be a problem for 
analyzability? 
à  Timing Anomalies 
à  Domino Effects 
à  Lack of Timing Compositionality 
 

¢  Eliminate Timing Anomalies, 
e.g. stall pipeline on cache miss and use LRU. 

¢  Eliminate Domino Effects 
e.g. use LRU rather than FIFO.  

 



Timing Anomalies 

Timing Anomaly = Counterintuitive scenario in 
which the “local worst case” does not imply       
the “global worst case”. 
 

Example: Scheduling Anomaly 

A

A

Resource 1

Resource 2

Resource 1

Resource 2

C

B C

B

D E

D E

C ready

Bounds on multiprocessing timing anomalies 
RL Graham - SIAM Journal on Applied Mathematics, 1969 – SIAM 
(http://epubs.siam.org/doi/abs/10.1137/0117039) 

Recommended 
literature: 



Timing Anomalies 
Example: Speculation Anomaly 

A

A

Cache Miss

Cache Hit

C

Branch Condition 
Evaluated

Prefetch B - Miss C

Prefetching as branch 
condition has not been 
evaluated yet  

No prefetching as branch 
condition has already 
been evaluated yet  



Timing Anomalies 
Example: Speculation Anomaly 
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Prefetching as branch 
condition has not been 
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Memory access may 
induce additional 
cache misses later on 



Timing Anomalies 
Example: Cache Timing Anomaly of FIFO 
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Timing Anomalies 
Consequences for Timing Analysis 

In the presence of timing anomalies, a          
timing analysis cannot make decisions “locally”:   
it needs to consider all cases. 
à  May yield “State explosion problem” 

computer science
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universityState-of-the-art: Integrated WCET Analysis

Drawback Efficiency

Timing Anomalies hinder state space reduction

Sebastian Hahn Timing Compositionality 19 June 2013 6 / 19



Timing Anomalies 
Open Analysis and Design Challenges 

¢  How to determine whether a given timing 
model exhibits timing anomalies? 

¢  How to construct processors without timing 
anomalies? 
l  Caches: LRU replacement 
l  No speculation 
l  Other aspects: “halt” everything upon every 

“timing accident” à possibly very inefficient 
¢  How to construct conservative timing model 

without timing anomalies?  
l  Can we e.g. add a “safety margin” to the local 

worst case? 



Domino Effects 

¢  Intuitively:  
domino effect = “unbounded” timing anomaly 

¢  Examples: 
l  Pipeline (e.g. PowerPC 755) 
l  Caches (FIFO, PLRU, MRU, …) 



Domino Effects 
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Domino Effects 
Example: FIFO Cache 

[a,b,c,d] 
[b,a,e,d] 
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Equal up to renaming à Can extend this sequence arbitrarily 
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Similar examples exist for PLRU and MRU. 
Impossible for LRU. 



Domino Effects 
Open Analysis and Design Challenges 

Exactly as with timing anomalies: 
¢  How to determine whether a given timing 

model exhibits domino effects? 
¢  How to construct processors without domino 

effects? 
¢  How to construct conservative timing model 

without domino effects? 



Timing Compositionality 
Motivation 

¢  Some timing accidents are hard or 
even impossible to statically exclude at 
any particular program point: 
l  Interference on a shared bus: 

depends on behavior of tasks 
executed on other cores 

l  Interference on a cache in 
preemptively scheduled systems 

l  DRAM refreshes 
¢  But it may be possible to make 

cumulative statements about the 
number of these accidents 
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1 The input, determining which path is taken through the program.
2 The state of the hardware platform:

I Due to caches, pipelines, speculation, etc.
3 Interferences from the environment:

I External interferences as seen from the analyzed task on shared
busses, caches, memory.
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Timing Compositionality 
Intuitive Meaning 

¢  Timing of a program can be decomposed into 
contributions by different “components”, e.g. 
l  Pipeline 
l  Cache non-preempted 
l  Cache-related preemption delay 
l  Bus interference 
l  DRAM refreshes 
l … 

¢  Example, decomposition into pipeline and cache
  

[l, u]r[l

0
, u

0
] =

"(
l : l

0 � l

max{x 2 J | x  l

0} : l

0
< l

,

(
u : u

0  u

min{x 2 J | x � u

0} : u

0
> u

#

x 7! [0, 0]

x 7! [0, 1]

x 7! [0, 1000]

y 7! [2, 2]

y 7! [2, 1000]

y 7! [2,1]

Fr(x) := xrF (x)

?  Fr(?)  F

2
r(?)  F

3
r(?)  . . .

?  F (?)  F

2
(?)  F

3
(?)  . . .

After narrowing:

x 7! [0, 1000]

x 7! [0, 999]

x 7! [1, 1000]

y 7! [2, 2000]

x 7! [1000, 1000]

y 7! [3, 2001]

Integrated Cache and Pipeline Analysis:

PS ! CS?

A tB = �p 2 PS.A(p) tCS B(p)

Concretization function for integrated analysis:

�(AS) :=

[

ps2PS

{hp, ci | p 2 �PS(ps) ^ c 2 �CS(AS(ps))}

�(AS) :=

[

ps2PS

�PS(ps) \ �CS(AS(ps))

F
r
e
q
u
e
n
c
y

Execution

time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

Timing compositionality:

Tpipeline, cache(P, hp, ci) = Tpipeline(P, hpi)� Tcache(P, hci)
WCETpipeline, cache(P, hp, ci) = max

p,c
Tpipeline, cache(P, hp, ci)

 max

p
Tpipeline(P, hpi)�max

c
Tcache(P, hci)

2. REFERENCES



Timing Compositionality 
Application in Timing Analysis 

 
Then, the components (here: pipeline and cache) 
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�(AS) :=

[

ps2PS

{hp, ci | p 2 �PS(ps) ^ c 2 �CS(AS(ps))}

�(AS) :=

[

ps2PS

�PS(ps) \ �CS(AS(ps))

F
r
e
q
u
e
n
c
y

Execution

time

LB BCET WCET UB

Analysis-guaranteed timing bounds

Possible execution times Overest.

Timing compositionality:

Tpipeline, cache(P, hp, ci) = Tpipeline(P, hpi)� Tcache(P, hci)
WCETpipeline, cache(P ) = max

p,c
Tpipeline, cache(P, hp, ci)

 max

p
Tpipeline(P, hpi)�max

c
Tcache(P, hci)

= WCETpipeline(P ) +WCETcache(P )
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Timing Compositionality 
Example: “Cache-aware” Response-Time Analysis 

In preemptive scheduling, preempting tasks may 
“disturb” the cache contents of preempted tasks: 
 
 

computer science

saarland
universityPreemptively Scheduled Systems [Altmeyer et al.]

Response Time of Task 2

t

T2

T1

a

T1
d

T 1

a

T 2
d

T 2

1 Worst-case execution time of task 2 without preemptions: C2

2 Worst-case execution time of task 1 without preemptions: C1

3 Additional cost of task 1 preempting task 2: �1,2 = #add. misses · BRT

) R2  C2 +#preemptions · (C1 + �1,2)
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Additional misses due to preemption, referred to as 
the Cache-Related Preemption Delay (CRPD). 
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Timing Compositionality 
Example: “Cache-aware” Response-Time Analysis 

Timing decomposition: 
¢  WCET of T1 without preemptions: C1 
¢  WCET of T2 without preemptions: C2 
¢  Additional cost of T1 preempting T2: 

 CRPD1,2 = BRT * #additional misses 
à  Response time of T2:  

R2 ≤ C2 + #preemptions × (C1 + CRPD1,2) 

 
 
 



Timing Compositionality 
Open Analysis and Design Challenges 

¢  How to check whether a given decomposition 
of a timing model is valid? 

¢  How to compute bounds on the cost of 
individual events, such as cache misses (BRT 
in previous example) or bus stalls? 

¢  How to build microarchitecture in a way that 
permits a sound and precise decomposition of 
its timing? 



Summary: 
Approaches to Increase Predictability 

Uncertainty 
about Inputs 

Program inputs 
Initial state of microarchitecture 
Tasks on other cores 

Possible 
Executions 

Analysis 
Efficiency 

Reduce size by 
simplifying 
microarchitecture, e.g. 
eliminate cache, 
branch prediction, etc. 

Reduce influence 
of uncertainty on 
executions, e.g. by 
temporal isolation 

Decouple analysis efficiency from 
number of executions: 
•  Eliminate timing anomalies and 

domino effects, 
•  Achieve timing compositionality 
e.g. by LRU replacement, stalling 
pipeline upon cache miss 



Summary 

¢  (Fuzzy) notions of timing predictability 
¢  Important related notions: 

l  Timing anomalies 
l  Domino effects 
l  Timing compositionality 
l  Temporal isolation 

¢  Two ways of increasing predictability: 
1.  Reduce uncertainty 
2.  Reduce influence of uncertainty 


