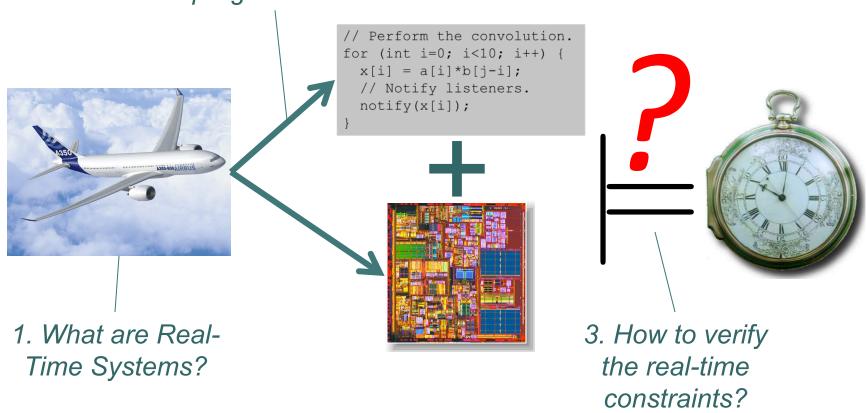
Design and Analysis of Real-Time Systems

Jan Reineke

Advanced Lecture, Summer 2013

(Design and) Analysis of Real-Time Systems

Jan Reineke


Advanced Lecture, Summer 2013

Organizational Issues

- Advanced Course (6 CPs)
 - Lectures every Thursday 14-16, E1.3, HS003
 - Tutorials: 2 hours every week; potential dates:
 - Monday 10-12, 14-16
 - Tuesday 10-12, 14-16
 - Written examination at the end of the term
 - Need to obtain > 50% of total points on exercises to participate
 - Grade determined by score on exam
 - Web: http://embedded.cs.uni-saarland.de/realtime.php

Structure of Course

2. How are they programmed?

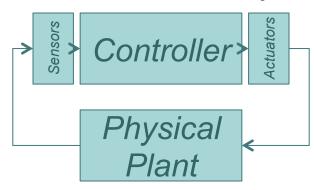
1. What are Real-Time Systems?

In a *real-time system*, correctness not only depends on the logical results but also on the *time* at which results are produced.

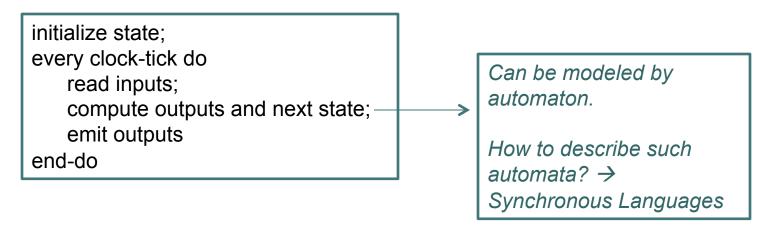
- Typical misconception:
 - Real-time computing ≠ compute things as fast as possible
 - Real-time computing = compute as fast as necessary, but not too fast

1. What are Real-Time Systems?

- Real-time systems are often embedded control systems
- Timing requirements often dictated by interaction with physical environment:
 - Examples in Automotives:
 - ABS: Anti-lock braking systems
 - ESP: Electronic stability control
 - Airbag controllers
 - Many more examples in trains, avionics, and robotics...

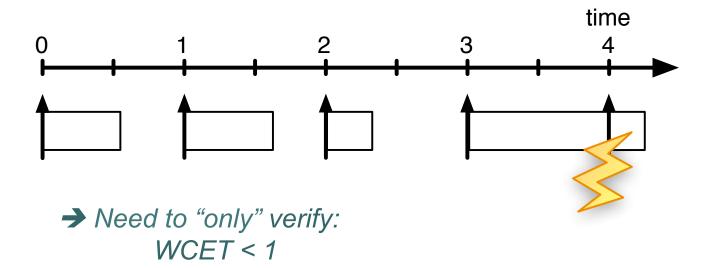


Classification of Real-Time Constraints Hard and Soft Real-Time Systems


- "A real-time constraint is called hard, if not meeting that constraint could result in a catastrophe" [Kopetz, 1997]
 - → Safety-critical real-time systems
 - → Main focus of this course
 - Can you think of examples?
- All other time-constraints are called soft.
 - Can you think of examples?
- A guaranteed system response has to be explained without statistical arguments [Kopetz, 1997].

2. How are they programmed?

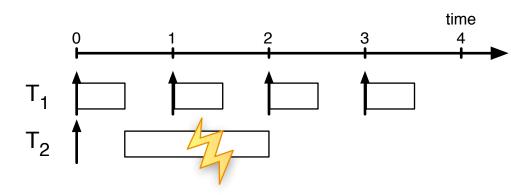
Typical structure of control systems:



A very basic approach to program such a system:

Basic Approach: Advantages

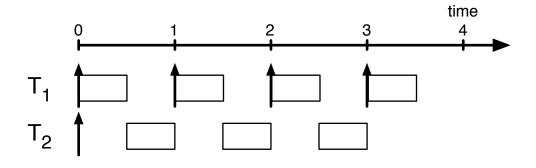
- Perfect match for sampled-data control theory
- Easy to implement, even on "bare" machine
- Timing analysis is comparably "simple":


Basic Approach: Limitations

- Distributed systems
 What if sensing, actuating, and computing happen at multiple locations?
- Event-triggered systems
 What if (some) computations are triggered by events rather than time?
- Multiperiodic systems
 What if different computations need to be performed at different periods?

Sophisticated scheduling policies have been introduced to overcome these limitations.

Example 1: Preemptive scheduling

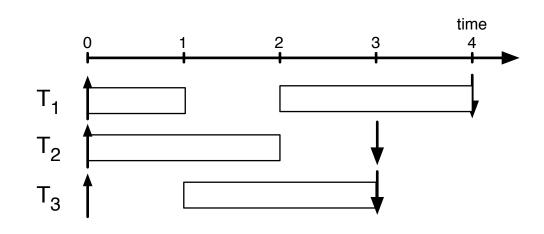

Non-preemptive execution of two periodic tasks:

Sophisticated scheduling policies have been introduced to overcome these limitations.

Example 1: Preemptive scheduling

Preemptive execution of the two tasks:

Sophisticated scheduling policies have been introduced to overcome these limitations.


Example 2: Multiprocessor scheduling

Is this task set schedulable on two processors?

Sophisticated scheduling policies have been introduced to overcome these limitations.

Example 2: Multiprocessor scheduling

It is!

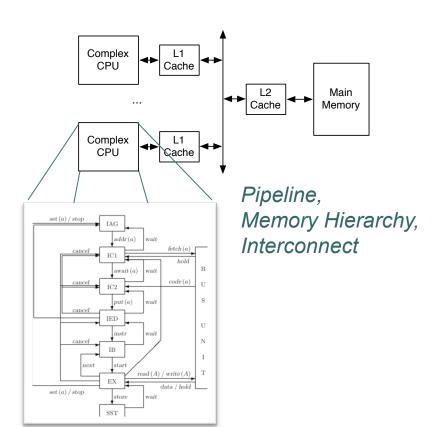
3. How to verify the real-time constraints? Schedulability Analysis

Schedulability tests determine whether a given set of tasks is feasible under a particular scheduling policy.

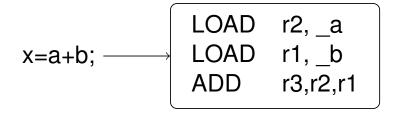
They all require bounds on the worst-case execution time (WCET) of all tasks.

3. How to verify the real-time constraints? Worst-case Execution Time Analysis

Worst-case execution time = maximum execution time of a program on a given microarchitecture

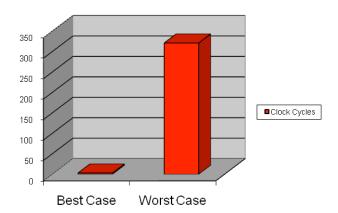

```
// Perform the convolution.
for (int i=0; i<10; i++) {
  x[i] = a[i]*b[j-i];
  // Notify listeners.
  notify(x[i]);
}</pre>
```

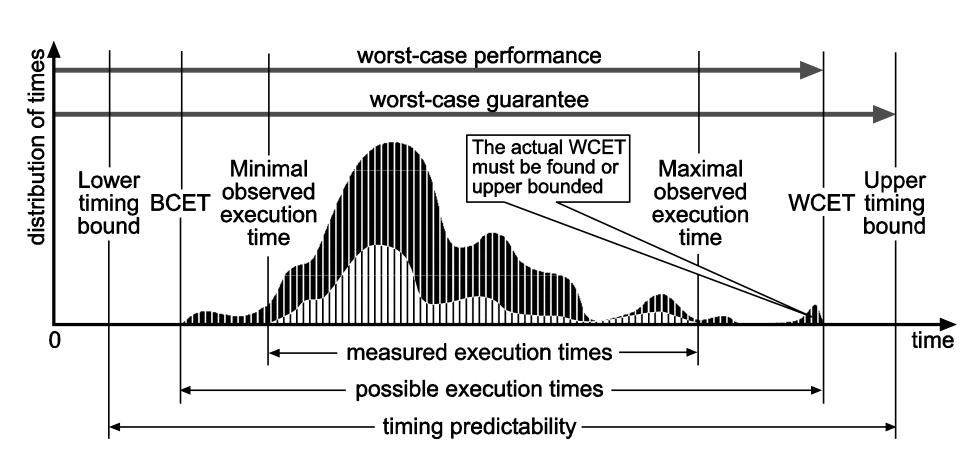
What does the execution time of a program depend on?


Input-dependent control flow

(buf == Z NULL) (adler >= BASE) (len >= NMAX) sum2 += adler (adler >= BASE) (sum2 >= BASE) sum2 -= BASE MOD4(sum2) MOD(adler) MOD(sum2) MOD(adler) return adler | (sum2 << 16) return adler | (sum2 << 16)

Microarchitectural State


Example of Influence of Microarchitectural State



Motorola PowerPC 755

Execution Time (Clock Cycles)

Notions in Worst-case Execution Time Analysis

Worst-case Execution Time Analysis What is hard about it?

- Need to account for all possible paths through the program, but not many more for precision...
 - Even termination is in general undecidable.
- Need to account for all possible states of the microarchitecture that may arise.
 - We will see "unpredictable" components.
- Before performing WCET analysis, one needs to construct a faithful model of the microarchitecture; documentation is limited.

Overview of Topics

- o Today:
 - High-level Overview of Challenges
- Rest of the course:
 - Worst-case Execution Time Analysis
 - Foundations of Abstract Interpretation
 - Value and Control-flow Analyses
 - Static Cache Analysis
 - Analysis of Preemption Cost
 - Predictable Microarchitectures
 - Scheduling Policies and Schedulability Analysis
 - Control Algorithms and Synchronous Languages
 - Clock Synchronization, Data-flow models, ...