
computer science

saarland
universityOutline

1 Caches

2 Cache Analysis for Least-Recently-Used

3 Beyond Least-Recently-Used
Predictability Metrics
Relative Competitiveness
Sensitivity – Caches and Measurement-Based Timing Analysis

4 Summary

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 22 / 51

computer science

saarland
universityOutline

1 Caches

2 Cache Analysis for Least-Recently-Used

3 Beyond Least-Recently-Used
Predictability Metrics
Relative Competitiveness
Sensitivity – Caches and Measurement-Based Timing Analysis

4 Summary

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 23 / 51

computer science

saarland
universityUncertainty in WCET Analysis

Amount of uncertainty determines precision of WCET analysis
Uncertainty in cache analysis depends on replacement policy

execution
time

BCET ACET WCET upper
bound

uncertainty
⇥

penalty
variation due to inputs

and initial hardware state

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 24 / 51

computer science

saarland
universityUncertainty in Cache Analysis

read
z

read
y

read
x

write
z

1. Initial cache contents unknown.

2. Need to combine information.

3. Cannot resolve address of z.

=) Amount of uncertainty determined
by ability to recover information

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 25 / 51

computer science

saarland
universityUncertainty in Cache Analysis

read
z

read
y

read
x

write
z

1. Initial cache contents unknown.

2. Need to combine information.

3. Cannot resolve address of z.

=) Amount of uncertainty determined
by ability to recover information

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 25 / 51

computer science

saarland
universityUncertainty in Cache Analysis

read
z

read
y

read
x

write
z

1. Initial cache contents unknown.

2. Need to combine information.

3. Cannot resolve address of z.

=) Amount of uncertainty determined
by ability to recover information

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 25 / 51

computer science

saarland
universityUncertainty in Cache Analysis

read
z

read
y

read
x

write
z

1. Initial cache contents unknown.

2. Need to combine information.

3. Cannot resolve address of z.

=) Amount of uncertainty determined
by ability to recover information

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 25 / 51

computer science

saarland
universityUncertainty in Cache Analysis

read
z

read
y

read
x

write
z

1. Initial cache contents unknown.

2. Need to combine information.

3. Cannot resolve address of z.

=) Amount of uncertainty determined
by ability to recover information

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 25 / 51

computer science

saarland
universityPredictability Metrics

Evict
Fill

[dex]
[fde]

[gfd]

[hgf][fec]

[gfe]

[fed]

Sequence: ha, . . . , e, f, g, hi

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 26 / 51

computer science

saarland
universityMeaning of Metrics

Evict
I Number of accesses to obtain any may-information.
I I.e. when can an analysis predict any cache misses?

Fill
I Number of accesses to complete may- and must-information.
I I.e. when can an analysis predict each access?

�! Evict and Fill bound the precision of any static cache analysis.
Can thus serve as a benchmark for analyses.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 27 / 51

computer science

saarland
universityEvaluation of Least-Recently-Used

LRU “forgets” about past quickly:
I cares about most-recent access to each block only
I order of previous accesses irrelevant

?
?
?
?

a
a
?
?
?

b
b
a
?
?

c
c
b
a
?

d

d
c
b
a

In the example: Evict = Fill = 4
In general: Evict(k) = Fill(k) = k , where k is the associativity of
the cache

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 28 / 51

computer science

saarland
universityEvaluation of First-In First-Out (sketch)

Like LRU in the miss-case
But: “Ignores” hits

?
a
b
c

a

?
a
b
c

b

?
a
b
c

c

?
a
b
c

d
d
?
a
b

In the worst-case k � 1 hits and k misses: (k = associativity)
�! Evict(k) = 2k � 1
Another k accesses to obtain complete knowledge:
�! Fill(k) = 3k � 1

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 29 / 51

computer science

saarland
universityEvaluation of Pseudo-LRU (sketch)

Tree-bits point to block to be replaced

1

1 1

a b c d

c 0

1 1

a b c d

e 1

0 1

a e c d

Accesses “rejuvenate” neighborhood
I Active blocks keep their (inactive) neighborhood in the cache

Analysis yields:
I Evict(k) = k

2 log2 k + 1
I Fill(k) = k

2 log2 k + k � 1

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 30 / 51

computer science

saarland
universityEvaluation of Policies

Policy Evict(k) Fill(k) Evict(8) Fill(8)
LRU k k 8 8
FIFO 2k � 1 3k � 1 15 23
MRU 2k � 2 1/3k � 4 14 1/20
PLRU k

2 log2 k + 1 k

2 log2 k + k � 1 13 19

LRU is optimal w.r.t. metrics.
Other policies are much less predictable.

�! Use LRU if predictability is a concern.

How to obtain may- and must-information within the given limits for
other policies?

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 31 / 51

computer science

saarland
universityOutline

1 Caches

2 Cache Analysis for Least-Recently-Used

3 Beyond Least-Recently-Used
Predictability Metrics
Relative Competitiveness
Sensitivity – Caches and Measurement-Based Timing Analysis

4 Summary

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 32 / 51

computer science

saarland
universityRelative Competitiveness

Competitiveness (Sleator and Tarjan, 1985):
worst-case performance of an online policy relative to the optimal

offline policy

I used to evaluate online policies

Relative competitiveness (Reineke and Grund, 2008):
worst-case performance of an online policy relative to another

online policy

I used to derive local and global cache analyses

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 33 / 51

computer science

saarland
universityDefinition – Relative Miss-Competitiveness

Notation

m

P

(p, s) = number of misses that policy P incurs on

access sequence s 2 M

⇤
starting in state p 2 C

P

Definition (Relative miss competitiveness)

Policy P is (k , c)-miss-competitive relative to policy Q if

m

P

(p, s)  k · m

Q

(q, s) + c

for all access sequences s 2 M

⇤ and cache-set states p 2 C

P, q 2 C

Q

that are compatible p ⇠ q.

Definition (Competitive miss ratio of P relative to Q)

The smallest k , s.t. P is (k , c)-miss-competitive rel. to Q for some c.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 34 / 51

computer science

saarland
universityDefinition – Relative Miss-Competitiveness

Notation

m

P

(p, s) = number of misses that policy P incurs on

access sequence s 2 M

⇤
starting in state p 2 C

P

Definition (Relative miss competitiveness)

Policy P is (k , c)-miss-competitive relative to policy Q if

m

P

(p, s)  k · m

Q

(q, s) + c

for all access sequences s 2 M

⇤ and cache-set states p 2 C

P, q 2 C

Q

that are compatible p ⇠ q.

Definition (Competitive miss ratio of P relative to Q)

The smallest k , s.t. P is (k , c)-miss-competitive rel. to Q for some c.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 34 / 51

computer science

saarland
universityDefinition – Relative Miss-Competitiveness

Notation

m

P

(p, s) = number of misses that policy P incurs on

access sequence s 2 M

⇤
starting in state p 2 C

P

Definition (Relative miss competitiveness)

Policy P is (k , c)-miss-competitive relative to policy Q if

m

P

(p, s)  k · m

Q

(q, s) + c

for all access sequences s 2 M

⇤ and cache-set states p 2 C

P, q 2 C

Q

that are compatible p ⇠ q.

Definition (Competitive miss ratio of P relative to Q)

The smallest k , s.t. P is (k , c)-miss-competitive rel. to Q for some c.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 34 / 51

computer science

saarland
universityExample – Relative Miss-Competitiveness

P is (3, 4)-miss-competitive relative to Q.
If Q incurs x misses, then P incurs at most 3 · x + 4 misses.

Best: P is (1, 0)-miss-competitive relative to Q.

Worst: P is not-miss-competitive (or 1-miss-competitive) relative to Q.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 35 / 51

computer science

saarland
universityExample – Relative Miss-Competitiveness

P is (3, 4)-miss-competitive relative to Q.
If Q incurs x misses, then P incurs at most 3 · x + 4 misses.

Best: P is (1, 0)-miss-competitive relative to Q.

Worst: P is not-miss-competitive (or 1-miss-competitive) relative to Q.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 35 / 51

computer science

saarland
universityExample – Relative Miss-Competitiveness

P is (3, 4)-miss-competitive relative to Q.
If Q incurs x misses, then P incurs at most 3 · x + 4 misses.

Best: P is (1, 0)-miss-competitive relative to Q.

Worst: P is not-miss-competitive (or 1-miss-competitive) relative to Q.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 35 / 51

computer science

saarland
universityExample – Relative Hit-Competitiveness

P is (2
3 , 3)-hit-competitive relative to Q.

If Q has x hits, then P has at least 2
3 · x � 3 hits.

Best: P is (1, 0)-hit-competitive relative to Q.
Equivalent to (1, 0)-miss-competitiveness.

Worst: P is (0, 0)-hit-competitive relative to Q.
Analogue to 1-miss-competitiveness.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 36 / 51

computer science

saarland
universityExample – Relative Hit-Competitiveness

P is (2
3 , 3)-hit-competitive relative to Q.

If Q has x hits, then P has at least 2
3 · x � 3 hits.

Best: P is (1, 0)-hit-competitive relative to Q.
Equivalent to (1, 0)-miss-competitiveness.

Worst: P is (0, 0)-hit-competitive relative to Q.
Analogue to 1-miss-competitiveness.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 36 / 51

computer science

saarland
universityExample – Relative Hit-Competitiveness

P is (2
3 , 3)-hit-competitive relative to Q.

If Q has x hits, then P has at least 2
3 · x � 3 hits.

Best: P is (1, 0)-hit-competitive relative to Q.
Equivalent to (1, 0)-miss-competitiveness.

Worst: P is (0, 0)-hit-competitive relative to Q.
Analogue to 1-miss-competitiveness.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 36 / 51

computer science

saarland
universityLocal Guarantees: (1, 0)-Competitiveness

Let P be (1, 0)-competitive relative to Q:

m

P

(p, s)  1 · m

Q

(q, s) + 0

, m

P

(p, s)  m

Q

(q, s)

1 If Q “hits”, so does P, and
2 if P “misses”, so does Q.

As a consequence,
1 a must-analysis for Q is also a must-analysis for P, and
2 a may-analysis for P is also a may-analysis for Q.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 37 / 51

computer science

saarland
universityLocal Guarantees: (1, 0)-Competitiveness

Let P be (1, 0)-competitive relative to Q:

m

P

(p, s)  1 · m

Q

(q, s) + 0

, m

P

(p, s)  m

Q

(q, s)

1 If Q “hits”, so does P, and
2 if P “misses”, so does Q.

As a consequence,
1 a must-analysis for Q is also a must-analysis for P, and
2 a may-analysis for P is also a may-analysis for Q.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 37 / 51

computer science

saarland
universityLocal Guarantees: (1, 0)-Competitiveness

Let P be (1, 0)-competitive relative to Q:

m

P

(p, s)  1 · m

Q

(q, s) + 0

, m

P

(p, s)  m

Q

(q, s)

1 If Q “hits”, so does P, and
2 if P “misses”, so does Q.

As a consequence,
1 a must-analysis for Q is also a must-analysis for P, and
2 a may-analysis for P is also a may-analysis for Q.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 37 / 51

computer science

saarland
universityGlobal Guarantees: (k , c)-Competitiveness

Given: Global guarantees for policy Q.
Wanted: Global guarantees for policy P.

1 Determine competitiveness of policy P relative to policy Q.

m

P

 k · m

Q

+ c

m

Q

(T) =
m

P

(T)

2 Compute global guarantee for task T under policy Q.

m

P

 k · m

Q

+ c

m

Q

(T) =
m

P

(T)

3 Calculate global guarantee on the number of misses for P using
the global guarantee for Q and the competitiveness results of P

relative to Q.
m

P

 k · m

Q

+ c

m

Q

(T) =
m

P

(T)

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 38 / 51

computer science

saarland
universityGlobal Guarantees: (k , c)-Competitiveness

Given: Global guarantees for policy Q.
Wanted: Global guarantees for policy P.

1 Determine competitiveness of policy P relative to policy Q.

m

P

 k · m

Q

+ c

m

Q

(T) =
m

P

(T)

2 Compute global guarantee for task T under policy Q.

m

P

 k · m

Q

+ c

m

Q

(T) =
m

P

(T)

3 Calculate global guarantee on the number of misses for P using
the global guarantee for Q and the competitiveness results of P

relative to Q.
m

P

 k · m

Q

+ c

m

Q

(T) =
m

P

(T)

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 38 / 51

computer science

saarland
universityGlobal Guarantees: (k , c)-Competitiveness

Given: Global guarantees for policy Q.
Wanted: Global guarantees for policy P.

1 Determine competitiveness of policy P relative to policy Q.

m

P

 k · m

Q

+ c

m

Q

(T) =
m

P

(T)

2 Compute global guarantee for task T under policy Q.

m

P

 k · m

Q

+ c

m

Q

(T) =
m

P

(T)

3 Calculate global guarantee on the number of misses for P using
the global guarantee for Q and the competitiveness results of P

relative to Q.
m

P

 k · m

Q

+ c

m

Q

(T) =
m

P

(T)

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 38 / 51

computer science

saarland
universityGlobal Guarantees: (k , c)-Competitiveness

Given: Global guarantees for policy Q.
Wanted: Global guarantees for policy P.

1 Determine competitiveness of policy P relative to policy Q.

m

P

 k · m

Q

+ c

m

Q

(T) =
m

P

(T)

2 Compute global guarantee for task T under policy Q.

m

P

 k · m

Q

+ c

m

Q

(T) =
m

P

(T)

3 Calculate global guarantee on the number of misses for P using
the global guarantee for Q and the competitiveness results of P

relative to Q.
m

P

 k · m

Q

+ c

m

Q

(T) =
m

P

(T)

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 38 / 51

computer science

saarland
universityRelative Competitiveness:

Automatic Computation
P and Q (here: FIFO and LRU) induce transition system:

[eabc]FIFO, [eabc]LRU

e(h, h)

[abcd]FIFO, [abcd]LRU
e

(m,m) a

(h, h)

[eabc]FIFO, [ceab]LRU

c (h, h)

[abcd]FIFO, [dabc]LRU

d (h, h)

[eabc]FIFO, [ceda]LRU [eabc]FIFO, [edab]LRU

e (m,m)

c
(h,m)

[deab]FIFO, [deab]LRU
d

(m, h)

Legend

[abcd]FIFO Cache-set state

· ·d
Memory access

(h,m), . . . Misses in pairs of

cache-set states

LRU
MRU

last-in
first-in

Competitive miss ratio = maximum ratio of misses in policy P to misses
in policy Q in transition system

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 39 / 51

computer science

saarland
universityTransition System is 1 Large

Problem: The induced transition system is 1 large.
Observation: Only the relative positions of elements matter:

[abc]LRU, [bde]FIFO [fgl]LRU, [ghm]FIFO⇡

[cab]LRU, [cbd]FIFO

(h,m)c

[lfg]LRU, [lgh]FIFO

(h,m)
l

⇡

Solution: Construct finite quotient transition system.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 40 / 51

computer science

saarland
university⇡-Equivalent States in Running Example

[eabc]FIFO, [eabc]LRU

e(h, h)

[abcd]FIFO, [abcd]LRU
e

(m,m) a

(h, h)

[eabc]FIFO, [ceab]LRU

c (h, h)

[abcd]FIFO, [dabc]LRU

d (h, h)

[eabc]FIFO, [ceda]LRU [eabc]FIFO, [edab]LRU

e (m,m)

c
(h,m)

[deab]FIFO, [deab]LRU
d

(m, h)

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 41 / 51

computer science

saarland
universityFinite Quotient Transition System

Merging ⇡-equivalent states yields a finite quotient transition system:

[abcd]FIFO, [abcd]LRU

(h, h)

(m,m)

[abcd]FIFO, [dabc]LRU

(h, h)

[eabc]FIFO, [edab]LRU

(m,m)

(m, h)

[eabc]FIFO, [ceda]LRU (h,m)

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 42 / 51

computer science

saarland
universityCompetitive Ratio = Maximum Cycle Ratio

Competitive miss ratio =
maximum ratio of misses in policy P to misses in policy Q

(1, 1)

(0, 0)

(0, 0)

(1, 1)

(1, 0)

(0, 1)

Maximum cycle ratio = 0+1+1
0+1+0 = 2

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 43 / 51

computer science

saarland
universityCompetitive Ratio = Maximum Cycle Ratio

Competitive miss ratio =
maximum ratio of misses in policy P to misses in policy Q

(1, 1)

(0, 0)

(0, 0)

(1, 1)

(1, 0)

(0, 1)

Maximum cycle ratio = 0+1+1
0+1+0 = 2

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 43 / 51

computer science

saarland
universityTool Implementation

Implemented in Java, called Relacs
Interface for replacement policies

Fully automatic
Provides example sequences for competitive ratio and constant

Analysis usually practically feasible up to associativity 8
I limited by memory consumption
I depends on similarity of replacement policies

Online version:
http://rw4.cs.uni-sb.de/~reineke/relacs

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 44 / 51

http://rw4.cs.uni-sb.de/~reineke/relacs

computer science

saarland
universityGeneralizations

Identified patterns and proved generalizations by hand.
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1, 0) comp. rel. to LRU(1 + log2k),

�! LRU-must-analysis can be used for PLRU

FIFO(k) is (1
2 ,

k�1
2) hit-comp. rel. to LRU(k),

whereas

LRU(k) is (0, 0) hit-comp. rel. to FIFO(k), but

LRU(2k � 1) is (1, 0) comp. rel. to FIFO(k),

and

LRU(2k � 2) is (1, 0) comp. rel. to MRU(k).
�! LRU-may-analysis can be used for FIFO and MRU
�! optimal with respect to predictability metric Evict

FIFO-may-analysis used in the analysis of the branch target buffer of
the MOTOROLA POWERPC 56X.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 45 / 51

computer science

saarland
universityGeneralizations

Identified patterns and proved generalizations by hand.
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1, 0) comp. rel. to LRU(1 + log2k),

�! LRU-must-analysis can be used for PLRU

FIFO(k) is (1
2 ,

k�1
2) hit-comp. rel. to LRU(k),

whereas

LRU(k) is (0, 0) hit-comp. rel. to FIFO(k), but

LRU(2k � 1) is (1, 0) comp. rel. to FIFO(k),

and

LRU(2k � 2) is (1, 0) comp. rel. to MRU(k).
�! LRU-may-analysis can be used for FIFO and MRU
�! optimal with respect to predictability metric Evict

FIFO-may-analysis used in the analysis of the branch target buffer of
the MOTOROLA POWERPC 56X.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 45 / 51

computer science

saarland
universityGeneralizations

Identified patterns and proved generalizations by hand.
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1, 0) comp. rel. to LRU(1 + log2k),

�! LRU-must-analysis can be used for PLRU

FIFO(k) is (1
2 ,

k�1
2) hit-comp. rel. to LRU(k), whereas

LRU(k) is (0, 0) hit-comp. rel. to FIFO(k), but

LRU(2k � 1) is (1, 0) comp. rel. to FIFO(k),

and

LRU(2k � 2) is (1, 0) comp. rel. to MRU(k).
�! LRU-may-analysis can be used for FIFO and MRU
�! optimal with respect to predictability metric Evict

FIFO-may-analysis used in the analysis of the branch target buffer of
the MOTOROLA POWERPC 56X.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 45 / 51

computer science

saarland
universityGeneralizations

Identified patterns and proved generalizations by hand.
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1, 0) comp. rel. to LRU(1 + log2k),

�! LRU-must-analysis can be used for PLRU

FIFO(k) is (1
2 ,

k�1
2) hit-comp. rel. to LRU(k), whereas

LRU(k) is (0, 0) hit-comp. rel. to FIFO(k), but

LRU(2k � 1) is (1, 0) comp. rel. to FIFO(k), and
LRU(2k � 2) is (1, 0) comp. rel. to MRU(k).

�! LRU-may-analysis can be used for FIFO and MRU
�! optimal with respect to predictability metric Evict

FIFO-may-analysis used in the analysis of the branch target buffer of
the MOTOROLA POWERPC 56X.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 45 / 51

computer science

saarland
universityGeneralizations

Identified patterns and proved generalizations by hand.
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1, 0) comp. rel. to LRU(1 + log2k),

�! LRU-must-analysis can be used for PLRU

FIFO(k) is (1
2 ,

k�1
2) hit-comp. rel. to LRU(k), whereas

LRU(k) is (0, 0) hit-comp. rel. to FIFO(k), but

LRU(2k � 1) is (1, 0) comp. rel. to FIFO(k), and
LRU(2k � 2) is (1, 0) comp. rel. to MRU(k).

�! LRU-may-analysis can be used for FIFO and MRU
�! optimal with respect to predictability metric Evict

FIFO-may-analysis used in the analysis of the branch target buffer of
the MOTOROLA POWERPC 56X.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 45 / 51

computer science

saarland
universityOutline

1 Caches

2 Cache Analysis for Least-Recently-Used

3 Beyond Least-Recently-Used
Predictability Metrics
Relative Competitiveness
Sensitivity – Caches and Measurement-Based Timing Analysis

4 Summary

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 46 / 51

computer science

saarland
universityMeasurement-Based Timing Analysis

Run program on a number of inputs and
initial states.
Combine measurements for basic blocks
to obtain WCET estimation.
Sensitivity Analysis demonstrates this
approach may be dramatically wrong.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 47 / 51

computer science

saarland
universityMeasurement-Based Timing Analysis

Run program on a number of inputs and
initial states.
Combine measurements for basic blocks
to obtain WCET estimation.
Sensitivity Analysis demonstrates this
approach may be dramatically wrong.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 47 / 51

computer science

saarland
universityInfluence of Initial Cache State

execution
time

BCET WCET upper
bound

variation due to
initial cache state

Definition (Miss sensitivity)

Policy P is (k , c)-miss-sensitive if

m

P

(p, s)  k · m

P

(p0, s) + c

for all access sequences s 2 M

⇤ and cache-set states p, p0 2 C

P.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 48 / 51

computer science

saarland
universitySensitivity Results

Policy 2 3 4 5 6 7 8
LRU 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 1, 8

FIFO 2, 2 3, 3 4, 4 5, 5 6, 6 7, 7 8, 8
PLRU 1, 2 � 1 � � � 1
MRU 1, 2 3, 4 5, 6 7, 8 MEM MEM MEM

LRU is optimal. Performance varies in the least possible way.
For FIFO, PLRU, and MRU the number of misses may vary
strongly.
Case study based on simple model of execution time by
Hennessy and Patterson (2003):
WCET may be 3 times higher than a measured execution time
for 4-way FIFO.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 49 / 51

computer science

saarland
universityOutline

1 Caches

2 Cache Analysis for Least-Recently-Used

3 Beyond Least-Recently-Used
Predictability Metrics
Relative Competitiveness
Sensitivity – Caches and Measurement-Based Timing Analysis

4 Summary

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 50 / 51

computer science

saarland
universitySummary

Cache Analysis for Least-Recently-Used
. . . efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.
. . . requires context-sensitivity for precision.

Predictability Metrics
. . . quantify the predictability of replacement policies.
�! LRU is the most predictable policy.

Relative Competitiveness
. . . allows to derive guarantees on cache performance,
. . . yields first may-analyses for FIFO and MRU.

Sensitivity Analysis
. . . determines the influence of initial state on cache performance.

Thank you for your attention!

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 51 / 51

computer science

saarland
universitySummary

Cache Analysis for Least-Recently-Used
. . . efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.
. . . requires context-sensitivity for precision.

Predictability Metrics
. . . quantify the predictability of replacement policies.
�! LRU is the most predictable policy.

Relative Competitiveness
. . . allows to derive guarantees on cache performance,
. . . yields first may-analyses for FIFO and MRU.

Sensitivity Analysis
. . . determines the influence of initial state on cache performance.

Thank you for your attention!

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 51 / 51

computer science

saarland
universitySummary

Cache Analysis for Least-Recently-Used
. . . efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.
. . . requires context-sensitivity for precision.

Predictability Metrics
. . . quantify the predictability of replacement policies.
�! LRU is the most predictable policy.

Relative Competitiveness
. . . allows to derive guarantees on cache performance,
. . . yields first may-analyses for FIFO and MRU.

Sensitivity Analysis
. . . determines the influence of initial state on cache performance.

Thank you for your attention!

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 51 / 51

computer science

saarland
universitySummary

Cache Analysis for Least-Recently-Used
. . . efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.
. . . requires context-sensitivity for precision.

Predictability Metrics
. . . quantify the predictability of replacement policies.
�! LRU is the most predictable policy.

Relative Competitiveness
. . . allows to derive guarantees on cache performance,
. . . yields first may-analyses for FIFO and MRU.

Sensitivity Analysis
. . . determines the influence of initial state on cache performance.

Thank you for your attention!

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 51 / 51

computer science

saarland
universitySummary

Cache Analysis for Least-Recently-Used
. . . efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.
. . . requires context-sensitivity for precision.

Predictability Metrics
. . . quantify the predictability of replacement policies.
�! LRU is the most predictable policy.

Relative Competitiveness
. . . allows to derive guarantees on cache performance,
. . . yields first may-analyses for FIFO and MRU.

Sensitivity Analysis
. . . determines the influence of initial state on cache performance.

Thank you for your attention!

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 51 / 51

computer science

saarland
universitySummary

Cache Analysis for Least-Recently-Used
. . . efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.
. . . requires context-sensitivity for precision.

Predictability Metrics
. . . quantify the predictability of replacement policies.
�! LRU is the most predictable policy.

Relative Competitiveness
. . . allows to derive guarantees on cache performance,
. . . yields first may-analyses for FIFO and MRU.

Sensitivity Analysis
. . . determines the influence of initial state on cache performance.

Thank you for your attention!

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 51 / 51

computer science

saarland
universityMost-Recently-Used – MRU

MRU-bits record whether line was recently used

[abcd]0101 b,d

[ebcd]1101 e,b,d

[ebcd]0010 c

e

c

�! Never converges

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 51 / 51

computer science

saarland
universityPseudo-LRU – PLRU

1

1 0

a b c d

0

1 1

a b e d

1

1 1

a b e d

0

1 0

a b e f

Initial cache-
set state
[a, b, c, d]110.

After a miss
on e. State:
[a, b, e, d]011.

After a hit
on a. State:
[a, b, e, d]111.

After a miss
on f . State:
[a, b, e, f]010.

Hit on a “rejuvenates” neighborhood; “saves” b from eviction.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 51 / 51

computer science

saarland
universityMay- and Must-Information

May

P(s) :=
[

p2C

P

CC

P

(update

P

(p, s))

Must

P(s) :=
\

p2C

P

CC

P

(update

P

(p, s))

may

P(n) :=
�

�

�

May

P(s)
�

�

�

,where s 2 S

6= (M

⇤, |s| = n

must

P(n) :=
�

�

�

Must

P(s)
�

�

�

,where s 2 S

6= (M

⇤, |s| = n

S

6= : set of finite access sequences with pairwise different accesses

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 51 / 51

computer science

saarland
universityDefinitions of Metrics

EvictP := min
n

n | may

P(n)  n

o

,

FillP := min
n

n | must

P(n) = k

o

,

where k is P’s associativity.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 51 / 51

computer science

saarland
universityRelation: Pred. Metrics $ Rel. Competitiveness

Let P(k) be (1, 0)-miss-competitive relative to policy Q(l), then
(i) Evict

P(k) � Evict

Q(l),
(ii) mls

P(k) � mls

Q(l).

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 51 / 51

computer science

saarland
universityAlternative Pred. Metrics $ Rel. Competitiveness

Let l be the smallest associativity, such that LRU(l) is
(1, 0)-miss-competitive relative to P(k). Then

Alt-EvictP(k) = l .

Let l be the greatest associativity, such that P(k) is
(1, 0)-miss-competitive relative to LRU(l). Then

Alt-mlsP(k) = l .

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 51 / 51

computer science

saarland
universitySize of Transition System

2l+l

0

|{z}

status bits
of P and Q

·
k

X

i=0

✓

k

i

◆

| {z }

non-empty lines in P

·
k

0
X

i

0=0

✓

k

0

i

0

◆

| {z }

non-empty lines in Q

·
min{i,i 0}
X

j=0

✓

i

j

◆✓

i

0

j

◆

j!

| {z }

number of overlappings
in non-empty lines

min{k ,k 0}
X

j=0

✓

k

j

◆✓

k

0

j

◆

j!  k ! · k

0!

min{k ,k 0}
X

j=0

1
(k � j)!j!(k 0 � j)!

 k ! · k

0!
1
X

j=0

1
j!

= e · k ! · k

0!

This can be bounded by

2l+l

0+k+k

0  |(Cl

k

⇥ C

l

0
k

0)/ ⇡ |  2l+l

0+k+k

0 · e · k ! · k

0!
| {z }

bound on number of overlappings

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 51 / 51

computer science

saarland
universityCompatible States

i

P = [????]
P

i

Q = [????]
Q

⇡

p

update

P

(iP, s)

q

update

Q

(iQ, s)

⇡

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 51 / 51

computer science

saarland
university(1, 0)-Competitiveness and May/Must-Analyses

Let P be (1, 0)-competitive relative to Q, then

p q⇡

p

0

m

P

(p, hxi) = 1

q

0

m

Q

(q, hxi) = 1

⇡

=)

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 51 / 51

computer science

saarland
university(1, 0)-Competitiveness and May/Must-Analyses

C

P

C

Q⇡

P

S

Q

S

⇡

P

0

8p 2 P : m

P

(p, hxi) = 1

Q

0

8q 2 Q : m

Q

(q, hxi) = 1

⇡

=)

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 51 / 51

computer science

saarland
universityCase Study: Impact of Sensitivity

Simple model of execution time from Hennessy & Patterson (2003)
CPI

hit

= Cycles per instruction assuming cache hits only
Memory accesses

Instruction including instruction and data fetches

T

wc

T

meas

=
CPI

hit

+Memory accesses
Instruction ⇥Miss rate

wc

⇥Miss penalty
CPI

hit

+Memory accesses
Instruction ⇥Miss rate

meas

⇥Miss penalty

= 1.5+1.2⇥0.20⇥50
1.5+1.2⇥0.05⇥50 = 13.5

4.5 = 3

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 51 / 51

