
computer science

saarland
universityOutline

1 Caches

2 Cache Analysis for Least-Recently-Used

3 Beyond Least-Recently-Used
Predictability Metrics
Relative Competitiveness
Sensitivity – Caches and Measurement-Based Timing Analysis

4 Summary

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 22 / 51



computer science

saarland
universityOutline

1 Caches

2 Cache Analysis for Least-Recently-Used

3 Beyond Least-Recently-Used
Predictability Metrics
Relative Competitiveness
Sensitivity – Caches and Measurement-Based Timing Analysis

4 Summary

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 23 / 51



computer science

saarland
universityUncertainty in WCET Analysis

Amount of uncertainty determines precision of WCET analysis
Uncertainty in cache analysis depends on replacement policy

execution
time

BCET ACET WCET upper
bound

uncertainty
⇥

penalty
variation due to inputs

and initial hardware state
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read
z

read
y

read
x

write
z

1. Initial cache contents unknown.

2. Need to combine information.

3. Cannot resolve address of z.

=) Amount of uncertainty determined
by ability to recover information
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Evict
Fill

[dex]
[fde]

[gfd ]

[hgf ][fec]

[gfe]

[fed ]

Sequence: ha, . . . , e, f, g, hi
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Evict
I Number of accesses to obtain any may-information.
I I.e. when can an analysis predict any cache misses?

Fill
I Number of accesses to complete may- and must-information.
I I.e. when can an analysis predict each access?

�! Evict and Fill bound the precision of any static cache analysis.
Can thus serve as a benchmark for analyses.
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LRU “forgets” about past quickly:
I cares about most-recent access to each block only
I order of previous accesses irrelevant

?
?
?
?

a
a
?
?
?

b
b
a
?
?

c
c
b
a
?

d

d
c
b
a

In the example: Evict = Fill = 4
In general: Evict(k) = Fill(k) = k , where k is the associativity of
the cache

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 28 / 51



computer science

saarland
universityEvaluation of First-In First-Out (sketch)

Like LRU in the miss-case
But: “Ignores” hits

?
a
b
c

a

?
a
b
c

b

?
a
b
c

c

?
a
b
c

d
d
?
a
b

In the worst-case k � 1 hits and k misses: (k = associativity)
�! Evict(k) = 2k � 1
Another k accesses to obtain complete knowledge:
�! Fill(k) = 3k � 1
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Tree-bits point to block to be replaced

1

1 1

a b c d

c 0

1 1

a b c d

e 1

0 1

a e c d

Accesses “rejuvenate” neighborhood
I Active blocks keep their (inactive) neighborhood in the cache

Analysis yields:
I Evict(k) = k

2 log2 k + 1
I Fill(k) = k

2 log2 k + k � 1
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Policy Evict(k) Fill(k) Evict(8) Fill(8)
LRU k k 8 8
FIFO 2k � 1 3k � 1 15 23
MRU 2k � 2 1/3k � 4 14 1/20
PLRU k

2 log2 k + 1 k

2 log2 k + k � 1 13 19

LRU is optimal w.r.t. metrics.
Other policies are much less predictable.

�! Use LRU if predictability is a concern.

How to obtain may- and must-information within the given limits for
other policies?
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Competitiveness (Sleator and Tarjan, 1985):
worst-case performance of an online policy relative to the optimal

offline policy

I used to evaluate online policies

Relative competitiveness (Reineke and Grund, 2008):
worst-case performance of an online policy relative to another

online policy

I used to derive local and global cache analyses
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Notation

m

P

(p, s) = number of misses that policy P incurs on

access sequence s 2 M

⇤
starting in state p 2 C

P

Definition (Relative miss competitiveness)

Policy P is (k , c)-miss-competitive relative to policy Q if

m

P

(p, s)  k · m

Q

(q, s) + c

for all access sequences s 2 M

⇤ and cache-set states p 2 C

P, q 2 C

Q

that are compatible p ⇠ q.

Definition (Competitive miss ratio of P relative to Q)

The smallest k , s.t. P is (k , c)-miss-competitive rel. to Q for some c.
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P is (3, 4)-miss-competitive relative to Q.
If Q incurs x misses, then P incurs at most 3 · x + 4 misses.

Best: P is (1, 0)-miss-competitive relative to Q.

Worst: P is not-miss-competitive (or 1-miss-competitive) relative to Q.
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universityExample – Relative Hit-Competitiveness

P is (2
3 , 3)-hit-competitive relative to Q.

If Q has x hits, then P has at least 2
3 · x � 3 hits.

Best: P is (1, 0)-hit-competitive relative to Q.
Equivalent to (1, 0)-miss-competitiveness.

Worst: P is (0, 0)-hit-competitive relative to Q.
Analogue to 1-miss-competitiveness.
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Let P be (1, 0)-competitive relative to Q:

m

P

(p, s)  1 · m

Q

(q, s) + 0

, m

P

(p, s)  m

Q

(q, s)

1 If Q “hits”, so does P, and
2 if P “misses”, so does Q.

As a consequence,
1 a must-analysis for Q is also a must-analysis for P, and
2 a may-analysis for P is also a may-analysis for Q.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 37 / 51



computer science

saarland
universityLocal Guarantees: (1, 0)-Competitiveness

Let P be (1, 0)-competitive relative to Q:

m

P

(p, s)  1 · m

Q

(q, s) + 0

, m

P

(p, s)  m

Q

(q, s)

1 If Q “hits”, so does P, and
2 if P “misses”, so does Q.

As a consequence,
1 a must-analysis for Q is also a must-analysis for P, and
2 a may-analysis for P is also a may-analysis for Q.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 37 / 51



computer science

saarland
universityLocal Guarantees: (1, 0)-Competitiveness

Let P be (1, 0)-competitive relative to Q:

m

P

(p, s)  1 · m

Q

(q, s) + 0

, m

P

(p, s)  m

Q

(q, s)

1 If Q “hits”, so does P, and
2 if P “misses”, so does Q.

As a consequence,
1 a must-analysis for Q is also a must-analysis for P, and
2 a may-analysis for P is also a may-analysis for Q.

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 37 / 51



computer science

saarland
universityGlobal Guarantees: (k , c)-Competitiveness

Given: Global guarantees for policy Q.
Wanted: Global guarantees for policy P.

1 Determine competitiveness of policy P relative to policy Q.

m

P

 k · m

Q

+ c

m

Q

(T) =
m

P

(T)

2 Compute global guarantee for task T under policy Q.

m

P

 k · m

Q

+ c

m

Q

(T) =
m

P

(T)

3 Calculate global guarantee on the number of misses for P using
the global guarantee for Q and the competitiveness results of P

relative to Q.
m

P

 k · m

Q

+ c

m

Q

(T) =
m

P

(T)
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Automatic Computation
P and Q (here: FIFO and LRU) induce transition system:

[eabc]FIFO, [eabc]LRU

e(h, h)

[abcd ]FIFO, [abcd ]LRU
e

(m,m) a

(h, h)

[eabc]FIFO, [ceab]LRU

c (h, h)

[abcd ]FIFO, [dabc]LRU

d (h, h)

[eabc]FIFO, [ceda]LRU [eabc]FIFO, [edab]LRU

e (m,m)

c
(h,m)

[deab]FIFO, [deab]LRU
d

(m, h)

Legend

[abcd ]FIFO Cache-set state

· ·d
Memory access

(h,m), . . . Misses in pairs of

cache-set states

LRU
MRU

last-in
first-in

Competitive miss ratio = maximum ratio of misses in policy P to misses
in policy Q in transition system

Jan Reineke Caches in WCET Analysis Advanced Lecture, 2013 39 / 51



computer science

saarland
universityTransition System is 1 Large

Problem: The induced transition system is 1 large.
Observation: Only the relative positions of elements matter:

[abc]LRU, [bde]FIFO [fgl ]LRU, [ghm]FIFO⇡

[cab]LRU, [cbd ]FIFO

(h,m)c

[lfg]LRU, [lgh]FIFO

(h,m)
l

⇡

Solution: Construct finite quotient transition system.
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[eabc]FIFO, [eabc]LRU

e(h, h)

[abcd ]FIFO, [abcd ]LRU
e

(m,m) a

(h, h)

[eabc]FIFO, [ceab]LRU

c (h, h)

[abcd ]FIFO, [dabc]LRU

d (h, h)

[eabc]FIFO, [ceda]LRU [eabc]FIFO, [edab]LRU

e (m,m)

c
(h,m)

[deab]FIFO, [deab]LRU
d

(m, h)
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Merging ⇡-equivalent states yields a finite quotient transition system:

[abcd ]FIFO, [abcd ]LRU

(h, h)

(m,m)

[abcd ]FIFO, [dabc]LRU

(h, h)

[eabc]FIFO, [edab]LRU

(m,m)

(m, h)

[eabc]FIFO, [ceda]LRU (h,m)
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Competitive miss ratio =
maximum ratio of misses in policy P to misses in policy Q

(1, 1)

(0, 0)

(0, 0)

(1, 1)

(1, 0)

(0, 1)

Maximum cycle ratio = 0+1+1
0+1+0 = 2
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Implemented in Java, called Relacs
Interface for replacement policies

Fully automatic
Provides example sequences for competitive ratio and constant

Analysis usually practically feasible up to associativity 8
I limited by memory consumption
I depends on similarity of replacement policies

Online version:
http://rw4.cs.uni-sb.de/~reineke/relacs
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universityGeneralizations

Identified patterns and proved generalizations by hand.
Aided by example sequences generated by tool.

Previously unknown facts:
PLRU(k) is (1, 0) comp. rel. to LRU(1 + log2k),

�! LRU-must-analysis can be used for PLRU

FIFO(k) is (1
2 ,

k�1
2 ) hit-comp. rel. to LRU(k),

whereas

LRU(k) is (0, 0) hit-comp. rel. to FIFO(k), but

LRU(2k � 1) is (1, 0) comp. rel. to FIFO(k),

and

LRU(2k � 2) is (1, 0) comp. rel. to MRU(k).
�! LRU-may-analysis can be used for FIFO and MRU
�! optimal with respect to predictability metric Evict

FIFO-may-analysis used in the analysis of the branch target buffer of
the MOTOROLA POWERPC 56X.
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universityMeasurement-Based Timing Analysis

Run program on a number of inputs and
initial states.
Combine measurements for basic blocks
to obtain WCET estimation.
Sensitivity Analysis demonstrates this
approach may be dramatically wrong.
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execution
time

BCET WCET upper
bound

variation due to
initial cache state

Definition (Miss sensitivity)

Policy P is (k , c)-miss-sensitive if

m

P

(p, s)  k · m

P

(p0, s) + c

for all access sequences s 2 M

⇤ and cache-set states p, p0 2 C

P.
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Policy 2 3 4 5 6 7 8
LRU 1, 2 1, 3 1, 4 1, 5 1, 6 1, 7 1, 8

FIFO 2, 2 3, 3 4, 4 5, 5 6, 6 7, 7 8, 8
PLRU 1, 2 � 1 � � � 1
MRU 1, 2 3, 4 5, 6 7, 8 MEM MEM MEM

LRU is optimal. Performance varies in the least possible way.
For FIFO, PLRU, and MRU the number of misses may vary
strongly.
Case study based on simple model of execution time by
Hennessy and Patterson (2003):
WCET may be 3 times higher than a measured execution time
for 4-way FIFO.
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1 Caches

2 Cache Analysis for Least-Recently-Used

3 Beyond Least-Recently-Used
Predictability Metrics
Relative Competitiveness
Sensitivity – Caches and Measurement-Based Timing Analysis

4 Summary
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Cache Analysis for Least-Recently-Used
. . . efficiently represents sets of cache states by bounding the age
of memory blocks from above and below.
. . . requires context-sensitivity for precision.

Predictability Metrics
. . . quantify the predictability of replacement policies.
�! LRU is the most predictable policy.

Relative Competitiveness
. . . allows to derive guarantees on cache performance,
. . . yields first may-analyses for FIFO and MRU.

Sensitivity Analysis
. . . determines the influence of initial state on cache performance.

Thank you for your attention!
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MRU-bits record whether line was recently used

[abcd ]0101 b,d

[ebcd ]1101 e,b,d

[ebcd ]0010 c

e

c

�! Never converges
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1

1 0

a b c d

0

1 1

a b e d

1

1 1

a b e d

0

1 0

a b e f

Initial cache-
set state
[a, b, c, d ]110.

After a miss
on e. State:
[a, b, e, d ]011.

After a hit
on a. State:
[a, b, e, d ]111.

After a miss
on f . State:
[a, b, e, f ]010.

Hit on a “rejuvenates” neighborhood; “saves” b from eviction.
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May

P(s) :=
[

p2C

P

CC

P

(update

P

(p, s))

Must

P(s) :=
\

p2C

P

CC

P

(update

P

(p, s))

may

P(n) :=
�

�

�

May

P(s)
�

�

�

,where s 2 S

6= ( M

⇤, |s| = n

must

P(n) :=
�

�

�

Must

P(s)
�

�

�

,where s 2 S

6= ( M

⇤, |s| = n

S

6= : set of finite access sequences with pairwise different accesses
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EvictP := min
n

n | may

P(n)  n

o

,

FillP := min
n

n | must

P(n) = k

o

,

where k is P’s associativity.
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Let P(k) be (1, 0)-miss-competitive relative to policy Q(l), then
(i) Evict

P(k) � Evict

Q(l),
(ii) mls

P(k) � mls

Q(l).
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Let l be the smallest associativity, such that LRU(l) is
(1, 0)-miss-competitive relative to P(k). Then

Alt-EvictP(k) = l .

Let l be the greatest associativity, such that P(k) is
(1, 0)-miss-competitive relative to LRU(l). Then

Alt-mlsP(k) = l .
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2l+l

0

|{z}

status bits
of P and Q

·
k

X

i=0

✓

k

i

◆

| {z }

non-empty lines in P

·
k

0
X

i

0=0

✓

k

0

i

0

◆

| {z }

non-empty lines in Q

·
min{i,i 0}
X

j=0

✓

i

j

◆✓

i

0

j

◆

j!

| {z }

number of overlappings
in non-empty lines

min{k ,k 0}
X

j=0

✓

k

j

◆✓

k

0

j

◆

j!  k ! · k

0!

min{k ,k 0}
X

j=0

1
(k � j)!j!(k 0 � j)!

 k ! · k

0!
1
X

j=0

1
j!

= e · k ! · k

0!

This can be bounded by

2l+l

0+k+k

0  |(Cl

k

⇥ C

l

0
k

0)/ ⇡ |  2l+l

0+k+k

0 · e · k ! · k

0!
| {z }

bound on number of overlappings
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i

P = [????]
P

i

Q = [????]
Q

⇡

p

update

P

(iP, s)

q

update

Q

(iQ, s)

⇡
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Let P be (1, 0)-competitive relative to Q, then

p q⇡

p

0

m

P

(p, hxi) = 1

q

0

m

Q

(q, hxi) = 1

⇡

=)
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C

P

C

Q⇡

P

S

Q

S

⇡

P

0

8p 2 P : m

P

(p, hxi) = 1

Q

0

8q 2 Q : m

Q

(q, hxi) = 1

⇡

=)
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Simple model of execution time from Hennessy & Patterson (2003)
CPI

hit

= Cycles per instruction assuming cache hits only
Memory accesses

Instruction including instruction and data fetches

T

wc

T

meas

=
CPI

hit

+Memory accesses
Instruction ⇥Miss rate

wc

⇥Miss penalty
CPI

hit

+Memory accesses
Instruction ⇥Miss rate

meas

⇥Miss penalty

= 1.5+1.2⇥0.20⇥50
1.5+1.2⇥0.05⇥50 = 13.5

4.5 = 3
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