Design and Analysis of Real-Time Systems

Jan Reineke Andreas Abel

Deadline: Thursday, May 16, 2013, 14:15

Assignment 3

Problem 1: Galois Connections (7 Points)

Which of the following examples are not Galois connections? Find counterexamples for those cases!

- 1. $(\mathbb{R}, \leq) \xrightarrow{\gamma} (\mathbb{R}, \leq)$, with $\alpha(x) = \lceil x \rceil$ and $\gamma(y) = \lfloor y \rfloor$
- 2. $(\mathbb{R}, \leq) \xrightarrow{\gamma} (\mathbb{R}, \leq)$, with $\alpha(x) = \lfloor x \rfloor$ and $\gamma(y) = \lceil y \rceil$
- 3. $(\mathcal{P}(\mathbb{R}), \subseteq) \xrightarrow{\gamma} (\mathcal{P}(\mathbb{R}), \subseteq)$ with $\alpha(X) = \{ \lfloor x \rfloor \mid x \in X \}$ and $\gamma(Y) = \{ \lceil y \rceil \mid y \in Y \}$
- 4. $(\mathcal{P}(\mathbb{R}), \subseteq) \xrightarrow{\gamma} (\mathcal{P}(\mathbb{R}_0^+), \subseteq)$ with $\alpha(X) = \{|x| \mid x \in X\}$ and $\gamma(Y) = \{-y, y \mid y \in Y\}$, where $\mathbb{R}_0^+ = [0; \infty[$
- 5. $(\mathcal{P}(\mathbb{R}), \subseteq) \xrightarrow{\gamma} (\mathcal{P}(\mathbb{R}), \subseteq)$ with $\alpha(X) = \{ |x| \mid x \in X \}$ and $\gamma(Y) = \{ -y, y \mid y \in Y \}$
- 6. $(\mathcal{P}(\mathbb{N}), \subseteq) \xrightarrow{\gamma} (\mathcal{P}(\mathbb{N}), \subseteq)$ with $\alpha(X) = \emptyset$ and $\gamma(Y) = \mathbb{N}$
- 7. $(\mathcal{P}(\mathbb{N}), \subseteq) \xrightarrow{\gamma} (\mathcal{P}(\mathbb{N}), \subseteq)$ with $\alpha(X) = \mathbb{N}$ and $\gamma(Y) = \emptyset$

Problem 2: Monotone Functions (2 Points)

Assume that f is a monotone function. Does $f(x_1) \leq f(x_2)$ imply $x_1 \leq x_2$? Give a proof or find a counterexample.

Problem 3: Sign Analysis (3+3+4+4+7) Points)

In this exercise, we consider an analysis that can detect whether a variable is $0, < 0, \le 0$, > 0, or ≥ 0 .

- 1. Choose a suitable order \sqsubseteq , such that the set $S = \{0, < 0, \le 0, > 0, \ge 0, \top, \bot\}$ is a complete lattice. Draw a Hasse diagram for the set.
- 2. Define an abstraction function $\alpha : \mathcal{P}(\mathbb{Z}) \to S$, and a concretization function $\gamma : S \to \mathcal{P}(\mathbb{Z})$, such that $(\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\gamma} (S, \sqsubseteq)$ is a Galois connection.
- 3. Prove that $(\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow{\gamma} (S, \sqsubseteq)$ is indeed a Galois connection.
- 4. Derive the abstract operators $+^{\#}$ and $-^{\#}$ for addition and subtraction:

$+^{\#}$	\perp	0	< 0	≤ 0	> 0	≥ 0	Т	_#	\perp	0	< 0	≤ 0	> 0	≥ 0	Т
1								\perp							
0								0							
< 0								< 0							
≤ 0								≤ 0							
> 0								> 0							
≥ 0								≥ 0							
Т								Т							

5. Build the control-flow graph for the following program and perform a *Sign Analysis*, analogous to the *Abstract Reachability Analysis* shown in the last lecture.

```
x = 10
y = 2
z = 0
while (x > 0) {
    y = y+y
    if (x<y)
        y = 0
    else
        z = z-x
    x = x-1
}
```

* Problem 4: Fixed points (4 Bonus Points)

A fixed point x of a function f is called *unique* if for every y such that f(y) = y, y = x. Prove that if there exists an $n \in \mathbb{N}^+$ such that x is a unique fixed point of f^n , then x is also a fixed point of f.