
Design and Analysis of
Time-Critical Systems
WCET Analysis: A Primer

Jan Reineke @

ACACES Summer School 2017
Fiuggi, Italy

computer science

saarland
university

2

What does the execution time of a
program depend on, on a single-core
machine?

Input-dependent
control flow

Pipeline,
Memory Hierarchy,
Interconnect

Microarchitectural State

+
Complex

CPU
L1

Cache

Complex
CPU

L1
Cache

...
L2

Cache
Main

Memory

Reineke et al., Berkeley 4

What does the execution time of a

program depend on?

Input-dependent

control flow
Microarchitectural State

+

Complex
CPU

L1
Cache

Complex
CPU

L1
Cache

...
L2

Cache
Main

Memory

Pipeline,

Memory Hierarchy,

Interconnect

3

The Single-core WCET Analysis Problem

1. INTRODUCTION

WCETH(P) := max

i2Inputs
max

h2States(H)
ETH(P, i, h)

2. REFERENCES

Consider all
possible
program
inputs

Consider all
possible initial
states of the

hardware

Measuring or simulating the execution time for all inputs
and all hardware states is not feasible in practice:
¢  There are too many.
¢  We cannot control the initial hardware states.
è  Need for approximation!

4

Requirements for WCET Analysis

1.  Upper bounds must be safe, i.e. not
underestimated.

2.  Upper bounds should be tight, i.e. not far
away from real execution times.

3.  Analysis effort must be tolerable.

f
r
e
q
u
e
n
c
y

execution

time

BCET WCET

possible execution times

f
r
e
q
u
e
n
c
y

execution

time

BCET WCET

analysis

guaranteed
upper bound

possible execution times

overestimation

f
r
e
q
u
e
n
c
y

execution

time

BCET WCET

possible execution times

Upper
Bound

≤

5

Standard WCET Analysis Approach Today:
Separation of Concerns + Abstraction

¢  Value Analysis:
Determines invariants for the values in registers
and in memory

¢  Separation:
1.  Bound possible microarchitectural executions

using abstractions.
2.  Determine constraints on control flow (e.g. loop

bounds) through program by abstractions.
¢  Combination: combine 1 and 2 to bound

execution time of the whole program.

Depends on
hardware

Depends on
program

semantics

6

Structure of WCET Analyzers
computer science

saarland
universityTiming Analysis Framework

Input
Executable

CFG
Reconstruction

Value
Analysis

Control
Flow

Analysis

Micro-
architectural

Analysis

Global
Bound

Analysis

WCET Bound

B Reconstructs a control flow
graph from the binary.

B Determines invariants for
the values in registers and in
memory.

B Determines constraints on the
control flow, by

B determining loop bounds, and

B identifying infeasible paths.

B Determines bounds on
execution times of basic blocks.

B Based on an abstract model
of the microarchitecture, includ-
ing detailed models of

B the pipeline, and

B the memory hierarchy.

B Determines a worst-case
path and an upper bound on
the execution time.

B Usually formulated as integer
linear program.

Jan Reineke Timing Analysis and Timing Predictability 2. April 2012 7 / 54

Reconstructs a
control-flow graph
from the binary.

Determines
invariants for the

values in registers
and in memory.

Determines invariants on the
control flow, by
•  Determining loop bounds,
•  Identifying infeasible paths.

Determines
possible

microarchitectural
executions.

Determines a worst-
case path and an

upper bound on the
WCET.

7

Structure of WCET Analyzers
Employed Techniques

computer science

saarland
universityTiming Analysis Framework

Input
Executable

CFG
Reconstruction

Value
Analysis

Control
Flow

Analysis

Micro-
architectural

Analysis

Global
Bound

Analysis

WCET Bound

B Reconstructs a control flow
graph from the binary.

B Determines invariants for
the values in registers and in
memory.

B Determines constraints on the
control flow, by

B determining loop bounds, and

B identifying infeasible paths.

B Determines bounds on
execution times of basic blocks.

B Based on an abstract model
of the microarchitecture, includ-
ing detailed models of

B the pipeline, and

B the memory hierarchy.

B Determines a worst-case
path and an upper bound on
the execution time.

B Usually formulated as integer
linear program.

Jan Reineke Timing Analysis and Timing Predictability 2. April 2012 7 / 54

Determines bound
on execution times

of program
fragments.

Abstract
Interpretation

of the Program

Abstract
Interpretation

of the Program

Abstract
Interpretation
of Program +

Hardware Model

Integer Linear
Programming

8

Running Example

int main(int x, int[] a) {
 int x = x % 5;
 int y = 42;

 while (x < y) {
 if (a[x] < a[x+1])
 x++
 else
 x += 2;
 }

 return x;
}

Binary
Program

 R1 = R1 % 5
 R2 = 42

 R1 = R1 + 1

 R3 = MEM[a+R1]
 R4 = MEM[a+R1+4]
 R3 < R4?

 return R1

 R1 < R2 ?

 R1 = R1 + 2

Compiler

Control-flow
Reconstruction

9

Structure of WCET Analyzers
computer science

saarland
universityTiming Analysis Framework

Input
Executable

CFG
Reconstruction

Value
Analysis

Control
Flow

Analysis

Micro-
architectural

Analysis

Global
Bound

Analysis

WCET Bound

B Reconstructs a control flow
graph from the binary.

B Determines invariants for
the values in registers and in
memory.

B Determines constraints on the
control flow, by

B determining loop bounds, and

B identifying infeasible paths.

B Determines bounds on
execution times of basic blocks.

B Based on an abstract model
of the microarchitecture, includ-
ing detailed models of

B the pipeline, and

B the memory hierarchy.

B Determines a worst-case
path and an upper bound on
the execution time.

B Usually formulated as integer
linear program.

Jan Reineke Timing Analysis and Timing Predictability 2. April 2012 7 / 54

Reconstructs a
control-flow graph
from the binary.

Determines
invariants for the

values in registers
and in memory.

Determines invariants on the
control flow, by
•  Determining loop bounds,
•  Identifying infeasible paths.

Determines
possible

microarchitectural
executions.

Determines a worst-
case path and an

upper bound on the
WCET.

10

Value Analysis

Determines invariants on values of registers at
different program points. Invariants are often in the
form of enclosing intervals of all possible values.

Where is this information used?
¢  Microarchitectural Analysis

l  Pipeline Analysis
l  Cache Analysis

¢  Control-Flow Analysis
l  Detect infeasible paths
l  Derive loop bounds

 R1 = R1 % 5
 R2 = 42

 R1 = R1 + 1

 R3 = MEM[a+R1]
 R4 = MEM[a+R1+4]
 R3 < R4?

 return R1

 R1 < R2 ?

 R1 = R1 + 2

11

Value Analysis
Intuition of Interval Analysis

 R1 = R1 % 5
 R2 = 42

 R1 = R1 + 1

 R3 = MEM[a+R1]
 R4 = MEM[a+R1+4]
 R3 < R4?

 return R1

 R1 < R2 ?

 R1 = R1 + 2

R1 = [-infty, +infty]
R2 = [-infty, +infty]

R1 = [0, 4]
R2 = [42, 42]

R1 = [2, 6]
R2 = [42, 42]

R1 = [1, 5]
R2 = [42, 42]

R1 = [0, 6]
R2 = [42, 42]

R1 = [2, 43]
R2 = [42, 42]

R1 = [1, 42]
R2 = [42, 42]

R1 = [0, 4]
R2 = [42, 42]
R1 = [0, 6]
R2 = [42, 42]
R1 = [0, 41]
R2 = [42, 42]

R1 = [0, 43]
R2 = [42, 42]

R1 = [42, 43]
R2 = [42, 42]

Can be formalized as
Abstract Interpretation.
è Yields soundness and
termination guarantees.

12

Structure of WCET Analyzers
computer science

saarland
universityTiming Analysis Framework

Input
Executable

CFG
Reconstruction

Value
Analysis

Control
Flow

Analysis

Micro-
architectural

Analysis

Global
Bound

Analysis

WCET Bound

B Reconstructs a control flow
graph from the binary.

B Determines invariants for
the values in registers and in
memory.

B Determines constraints on the
control flow, by

B determining loop bounds, and

B identifying infeasible paths.

B Determines bounds on
execution times of basic blocks.

B Based on an abstract model
of the microarchitecture, includ-
ing detailed models of

B the pipeline, and

B the memory hierarchy.

B Determines a worst-case
path and an upper bound on
the execution time.

B Usually formulated as integer
linear program.

Jan Reineke Timing Analysis and Timing Predictability 2. April 2012 7 / 54

Reconstructs a
control-flow graph
from the binary.

Determines
invariants for the

values in registers
and in memory.

Determines invariants on the
control flow, by
•  Determining loop bounds,
•  Identifying infeasible paths.

Determines
possible

microarchitectural
executions.

Determines a worst-
case path and an

upper bound on the
WCET.

13

Control-Flow Analysis

 R1 = R1 % 5
 R2 = 42

 R1 = R1 + 1

 R3 = MEM[a+R1]
 R4 = MEM[a+R1+4]
 R3 < R4?

 return R1

 R1 < R2 ?

 R1 = R1 + 2

R1 = [0, 41]
R2 = [42, 42]

R1 increases by at
least 1 in every
iteration

Can we also come up with a lower bound?

è Can enter loop at
 most 42 times

There are multiple approaches
to control-flow analysis.
Not the focus of this course.

14

Structure of WCET Analyzers
computer science

saarland
universityTiming Analysis Framework

Input
Executable

CFG
Reconstruction

Value
Analysis

Control
Flow

Analysis

Micro-
architectural

Analysis

Global
Bound

Analysis

WCET Bound

B Reconstructs a control flow
graph from the binary.

B Determines invariants for
the values in registers and in
memory.

B Determines constraints on the
control flow, by

B determining loop bounds, and

B identifying infeasible paths.

B Determines bounds on
execution times of basic blocks.

B Based on an abstract model
of the microarchitecture, includ-
ing detailed models of

B the pipeline, and

B the memory hierarchy.

B Determines a worst-case
path and an upper bound on
the execution time.

B Usually formulated as integer
linear program.

Jan Reineke Timing Analysis and Timing Predictability 2. April 2012 7 / 54

Reconstructs a
control-flow graph
from the binary.

Determines
invariants for the

values in registers
and in memory.

Determines invariants on the
control flow, by
•  Determining loop bounds,
•  Identifying infeasible paths.

Determines
possible

microarchitectural
executions.

Determines a worst-
case path and an

upper bound on the
WCET.

15

Microarchitectural Analysis

Ideal 1970s world: one instruction = one cycle
Today:

l  Pipelining
l  Branch prediction + speculative execution
l  Caches
l  DRAM-based main memory

è  Execution time of individual instruction highly variable
and dependent on state of microarchitecture

è  Need to analyze in which states the microarchitecture
may be in when executing an instruction

16

Pipelining

¢  Instruction execution is split into several stages
¢  Several instructions can be executed in an

overlapped fashion

¢  Some processors can start more than one
instruction per cycle: VLIW, Superscalar

¢  Some processors can execute instructions out-
of-order

Fetch

Decode

Execute

Memory

WB

17

Hardware Features: Pipelines

Ideal Case: One Instruction per Cycle, but there are Hazards!

Fetch

Decode

Execute

WB

Inst 1 Inst 2 Inst 3 Inst 4

Fetch

Decode

Execute

WB

Fetch

Decode

Execute

WB

Fetch

Decode

Execute

WB

18

Pipeline Hazards

¢  Data Hazards: Operands not yet available
(Data Dependences)

¢  Resource Hazards: Consecutive instructions
use same resource

¢  Control Hazards: Conditional branch
¢  Instruction-Cache Hazards: Instruction fetch

causes cache miss
¢  Data-Cache Hazards: Load causes cache miss

Assuming worst case everywhere is not an option;
it would be too pessimistic!

à Have to statically analyze the possible
microarchitectural behaviors.

19

Basis of Microarchitectural Analysis:
View of Processor as a State Machine

¢  Processor (pipeline, cache, registers, memory)
viewed as a big state machine,
performing transitions every clock cycle

¢  Starting in an initial state for an instruction,
transitions are performed, until a final state is
reached:
l  final state: instruction has left the pipeline
l  # transitions: execution time of instruction

¢  Transitions may be annotated with events
indicating e.g. a bus access, or a cache miss.

“µarchitectural state” “program state”

20

View of Processor as a Big State Machine

 R1 = R1 % 5
 R2 = 42

 R1 = R1 + 1

 R3 = MEM[a+R1]
 R4 = MEM[a+R1+4]
 R3 < R4?

 return R1

 R1 < R2 ?

 R1 = R1 + 2

Final states

Initial states

WCET = 9

Can associate microarchitectural states
with instructions in program.

21

View of Processor as a Big State Machine

 R1 = R1 % 5
 R2 = 42

 R1 = R1 + 1

 R3 = MEM[a+R1]
 R4 = MEM[a+R1+4]
 R3 < R4?

 return R1

 R1 < R2 ?

 R1 = R1 + 2

Final states

Initial states

Can associate microarchitectural states
with instructions in program.

State space of machine is too large to explore explicitly.

à Need for sound and compact approximation.

22

Abstracted State Machine

State space is product of
¢  “microarchitectural state”, i.e. pipeline and

cache state, and
¢  “program state”, i.e., register and memory

contents including the program inputs
First Abstraction:
Discard program state (which is
dealt with in control-flow analysis)

Second Abstraction:
Find abstract domains that
compactly represent large sets of
concrete microarchitectural states

23

How to Achieve “Sound Approximation”?
Abstract Interpretation in a Nutshell

1. Every abstract state s# represents a set of
conc(s#) concrete states:

conc

conc

24

s#‘

conc

How to Achieve “Sound Approximation”?
Abstract Interpretation in a Nutshell

2. Local Consistency:
The successors of the concretization of an abstract state s#
are represented by s#‘s successors:

conc

s#

25

How to Achieve “Sound Approximation”?
Abstract Interpretation in a Nutshell

sound
approximation conc

conc conc
conc

conc

Abstracted State
Machine

Concrete State
Machine

Local
Consistency

Local
Consistency

26

Consequences of Abstraction:
Nondeterminism

Nondeterminism:
In contrast to the concrete model, in the
abstract model, one state can have
several successor states.

Each abstract state represents a set of
concrete states, which may have
different successor states.
E.g. one may result in a cache hit, the
other in a cache miss.

Consequences:
à The abstract execution graph includes spurious executions,

which leads to overapproximation of the WCET
à There is a tradeoff between analysis cost and precision

27

Consequences of Abstraction:
Cycles

Cyclicity:
The abstract model may have cycles.

This is due to abstraction from the “program
state”. E.g. abstract states do not capture
the value of variables in a loop.

Consequences:
à The abstract execution graph alone cannot be used to derive

any WCET bound
à Need to combine information with control-flow analysis results

28

Structure of WCET Analyzers
computer science

saarland
universityTiming Analysis Framework

Input
Executable

CFG
Reconstruction

Value
Analysis

Control
Flow

Analysis

Micro-
architectural

Analysis

Global
Bound

Analysis

WCET Bound

B Reconstructs a control flow
graph from the binary.

B Determines invariants for
the values in registers and in
memory.

B Determines constraints on the
control flow, by

B determining loop bounds, and

B identifying infeasible paths.

B Determines bounds on
execution times of basic blocks.

B Based on an abstract model
of the microarchitecture, includ-
ing detailed models of

B the pipeline, and

B the memory hierarchy.

B Determines a worst-case
path and an upper bound on
the execution time.

B Usually formulated as integer
linear program.

Jan Reineke Timing Analysis and Timing Predictability 2. April 2012 7 / 54

Reconstructs a
control-flow graph
from the binary.

Determines
invariants for the

values in registers
and in memory.

Determines invariants on the
control flow, by
•  Determining loop bounds,
•  Identifying infeasible paths.

Determines
possible

microarchitectural
executions.

Determines a worst-
case path and an

upper bound on the
WCET.

29

Global Bound Analysis
aka Path Analysis aka Implicit Path Enumeration

¢  Determines a worst-case path and an upper
bound on the WCET.

¢  Formulated as integer linear program (ILP).

Integer
Linear

Program

+

Loop bounds + Infeasible paths

Abstract
execution

graph

30

Integer linear programming

Linear programming (LP)

… + Restriction to integers = ILP.

LP is in polynomial time, yet, ILP is NP hard,

 but often efficiently solvable in practice.

Solvers (e.g. CPLEX) determine the maximal value
of the objective function + corresponding valuation of
variables.

1. INTRODUCTION

WCETH(P) := max

i2Inputs
max

h2States(H)
ETH(P, i, h)

maximize c

T
x

subject to Ax b

and x � 0

2. REFERENCES

Objective function

Linear constraints

31

Global Bound Analysis
aka Path Analysis aka Implicit Path Enumeration

Determines a worst-case path through the abstract
execution graph and an upper bound on the WCET:
•  Introduce a variable for each edge in abstract execution graph

to capture how often this edge is taken
•  Encode structure of graph via linear constraints
•  Encode loop bounds and other infeasible path information via

linear constraints

 max xa + xb + xc + …
s.t. Structural Constraints
 Infeasible Path Constraints
 Loop Bound Constraints

Integer linear program:

+
Loop bounds + Infeasible paths

Abstract
execution

graph

32

Global Bound Analysis:
Small Example

max xa + xb + xc + xd + xe + xf
s.t. xa = 1
 xa = xb
 xb+xf = xc

 xc = xd

 xd = xe+xf

 xc <= 5 Loop Bound Constraint

a

b

c

d

e

f

+
Loop Bound = 5

Structural Constraints

Solution:
xa=xb=xe=1
xc=xd=5
xf=4
à xa + xb + xc + xd + xe + xf = 17

33

Summary and Outlook

¢  Separate Analysis into SW and HW aspects:
l  SW: Control-flow Analysis
l  HW: Microarchitectural Analysis
l  Combine results using Integer Linear Program

¢  Abstraction:
l  Employ sound abstractions to solve

undecidable problems approximately
à will see such an abstraction for caches next

34

Literature (very incomplete)

WCET Analysis:
¢  Li, Malik: Performance analysis of embedded software using implicit path

enumeration, In: Proceedings LCTRTS, 1995
¢  Ferdinand et al.: Reliable and Precise WCET Determination for a Real-Life

Processor, In: Proceedings EMSOFT, 2001
¢  Stephan Thesing. Safe and Precise WCET Determination by Abstract

Interpretation of Pipeline Models. PhD thesis, Saarland University, 2004
¢  Ingmar Jendrik Stein. ILP-based Path Analysis on Abstract Pipeline State

Graphs. PhD thesis, Saarland University, 2010
Loop Bounds:
¢  Cullmann, Martin: Data-flow based detection of loop bounds, In:

Proceedings WCET, 2007
¢  Ermedahl, Sandberg, Gustafsson, Bygde, Lisper: Loop bound analysis

based on a combination of program slicing, abstract interpretation, and
invariant analysis, In: Proceedings WCET 2007

¢  De Michiel, Bonenfant, Casse, Sainrat: Static Loop Bound Analysis of C
Programs Based on Flow Analysis and Abstract Interpretation, In:
Proceedings RTCSA, 2008

