
1 Approach

Equivalence queries are typically assumed to be more expensive than output
queries. Many existing active learning techniques therefore focus on keeping the
number of required equivalence queries low.

At a high level, Angluin’s L∗ algorithm for instance, can be described as
follows. In each round, the algorithm first performs a sequence of output queries
in a systematic way, until there is exactly one machine of minimum size that is
consistent with the results from all output queries performed so far. Only then, the
algorithm performs an equivalence query. If this query returns a counterexample,
this implies that the correct machine must have at least one additional state.
Thus, Angluin’s algorithm performs at most n equivalence queries, where n is
the size of the minimal correct machine.

Unlike in Angluin’s setting, in general no unique machine of minimum size
that is consistent with a set of observations exists. The basic idea behind our
approach is to perform output queries until all machines of minimum size that
are consistent with these queries are right-equivalent in the context of A. We
then perform an equivalence query for one of these machines. If this query results
in a counterexample, this counterexample witnesses that all of these machines are
incorrect, and thus, the correct machine must have at least one additional state.

One challenge is to find a suitable sequence of output queries that is guaranteed
to reduce the number of machines that are consistent with all queries performed
so far. The basic idea is to iteratively construct all machines of minimum size
that agree with all of the previous queries. We can then check whether each pair
of these machines is right-equivalent. If they are not, we use a distinguishing
sequence as a counterexample, without performing an equivalence query.

However, applying this approach naively would not be viable in many cases
because there can be an exponential number of machines of the same size that are
consistent with a set of observations, in particular in the beginning, when only
a small number of queries have been performed. Thus, we identify a number of
necessary conditions for candidate machines to be right-equivalent, which can be
efficiently determined on observation tables. Some of these conditions correspond
to notions from Angluin’s algorithm, such as consistency and closedness, while
others like input-completeness are special to our particular setting.

In the rest of this section, we describe our proposed algorithm in detail and
introduce the necessary theoretical concepts. In particular, we describe in detail
which output queries our algorithm performs to systematically reduce the number
of machines that are consistent with the observations made so far. In the following,
we assume that the reader is familiar with Angluin’s L∗ algorithm [2].

1.1 Observation tables

The main data structure used in our approach is an observation table. The rows
of the table are indexed by a set of prefixes, the columns by a set of suffixes, and
the entries of the table store the last output symbol of an output query for the
concatenation of the corresponding prefix and suffix. If this concatenation is not

a possible output sequence of the left machine A, we do not perform an output
query, but store ⊥ in this cell instead. In contrast to most previous definitions,
our observation tables do not consist of two explicitly distinguished parts.

Definition 1 (Observation Table). An observation table T = (S,E,Q) con-
sists of a finite non-empty prefix-closed set of prefixes S ⊆ tr(A), a finite
suffix-closed set of suffixes E ⊆ I∗B (such that IB ⊆ E, and ε /∈ E), and a
function Q : (S,E)→ OB such that Q(x, e) = CL(A−1(xe)) iff xe ∈ tr(A) and
Q(x, e) = ⊥ otherwise.

For a set R ⊆ S and a ∈ IB, let SuccT (R, a) := {xa | x ∈ R ∧ xa ∈ S}, i.e.,
SuccT (R, a) is the set of successor rows for elements of R that are in the table.

In the following, we will use the term row both for the prefixes and for the
entries of a row, when it is clear what is meant from the context.

We call two rows compatible if all columns that are not ⊥ in both rows are
the same.

Definition 2 (Compatibility). The rows for two prefixes x, y ∈ S are compat-
ible iff ∀e ∈ E : Q(x, e) = ⊥ ∨Q(y, e) = ⊥ ∨Q(x, e) = Q(y, e).

We call an observation table consistent if whenever two rows are compatible,
their successors are also compatible.

Definition 3 (Consistency). An observation table T is consistent iff for all
prefixes x, y ∈ S such that the rows for x and y are compatible, for all a ∈ IB all
rows in SuccT ({x, y}, a) are compatible.

If there is a suffix e ∈ E that shows that the successors of x and y under an input
a are not compatible, then ae is a suffix that shows that the rows for x and y
are also not compatible. Thus, we can add ae to E to resolve this inconsistency.

We define a partition of the set of rows as follows.

Definition 4 (Partition). A partition for observation table T = (S,E,Q) is a
partition P = {P1, ..., Pk} of S, such that

• for all x, y ∈ Pi: the rows for x and y are compatible,

• for each Pi, and for all a ∈ IB, there is a Pj, such that: SuccT (Pi, a) ⊆ Pj.

Note that if SuccT (Pi, a) 6= ∅ then there is only one such Pj since all classes
of the partition are disjoint.

We will later show how we can use partitions to build candidate machines
that are consistent with the observations made so far. The words in the same
class of a partition will then lead to the same states in these candidate machines.

We call a partition closed if for each class of the partition and each input
symbol a, the observation table contains a successor row (under a) for at least
one word of this class, if we know from the observations made so far that such
a successor must exist. Our inference algorithm uses closedness as a way to
determine which additional rows should be added to the table.

Definition 5 (Closedness for Partitions). Let P = {P1, ..., Pk} be a partition
for T = (S,E,Q). P is closed if for all Pi ∈ P : if there is some x ∈ Pi and some
sequence az ∈ E with a ∈ IB and z ∈ I∗B such that Q(x, az) 6= ⊥, then there
must be some y ∈ Pi for which Q(y, az) 6= ⊥, and ya ∈ S.

Given an observation table T , let Π(T, n) be the set of all partitions of size n.
Let Πmin(T) be the set of partitions of minimum size for an observation table T ,
i.e., Πmin(T) = Π(T,m) where m = min{n | Π(T, n) 6= ∅}.

Definition 6 (Closedness). An observation table T = (S,E,Q) is closed if all
minimum-size partitions P ∈ Πmin(T) are closed.

Definition 7 (Partial Closedness). An observation table T is partially closed
(p-closed) iff for all prefixes x ∈ S and all sequences az ∈ E such that Q(x, az) 6=
⊥, there is a prefix y ∈ S such that the rows for x and y are compatible,
Q(y, az) 6= ⊥ and ya ∈ S.

If a table is not p-closed, then no partition can be closed.

Definition 8 (Agreement). A Mealy machine M agrees with an observation
table T = (S,E,Q) if for all x ∈ S and e ∈ E, Q(x, e) = ⊥ ∨Q(x, e) = ML(xe).

For any closed partition P = {P1, ..., Pk} in Πmin(T), we can build the
following Mealy machine MP = (Q, I,O, δ, qr) with k+1 states: Q := P ∪{error},
I := IB, O := OB ∪ ⊥, δ(Pi, a) := (error,⊥) if SuccT (Pi, a) = ∅, otherwise:
δ(Pi, a) := (Pj , b) such that for some x ∈ Pi: Q(x, a) = b 6= ⊥ and SuccT (Pi, a) ⊆
Pj , and qr := Pi such that ε ∈ Pi.

This machine enters a special error state if there is a class of the partition,
for which the successor class is not defined.

In the following, we will use the notation πi(t) to denote the i-th component
of a tuple t, e.g., π2(qr, a) = a.

Lemma 1. Let P be a closed partition of an observation table T = (S,E,Q),
and MP = (Q, I,O, δ, qr) the Mealy machine constructed as described above. Then
for all words x ∈ S, x ∈ π1(δ∗(qr, x)).

Theorem 1. For a closed partition P of an observation table T , the machine
MP agrees with T .

Definition 9. Let γ(MP) be the set of machines with k states that can be
obtained from MP by removing the error state and replacing the transitions to
the error state by transitions with arbitrary outputs and successor states.

Theorem 2. Let T be a closed observation table. Then every minimum-size
machine M that agrees with T is isomorphic to an element of γ(MP) for some
P ∈ Πmin(T).

Theorem 3. If for a closed partition P the error state is not reachable in a
composition of A with MP , then all machines in γ(MP) are right-equivalent.

If the error state is reachable, we can use an input sequence that leads to the
error state to extend the observation table.

Definition 10 (Input-Completeness). An observation table T = (S,E,Q) is
input-complete if for all minimum-size partitions P ∈ Πmin(T), the error state
is not reachable in a composition of A with MP .

Definition 11 (Uniqueness). An observation table T = (S,E,Q) is unique if
for all pairs of minimum-size partitions P, P ′ ∈ Πmin(T), the machines MP and
MP ′ are right-equivalent in the context of A.

It follows that all machines of minimum-size size that agree with a consistent,
closed, input-complete, and unique observation table are right-equivalent, and
they can be obtained from the partitions.

2 Proofs

Proof of Lemma 1

Proof. By induction on the length of x.
Base Case: For |x| = 0, i.e., x = ε, by construction ε ∈ qr = π1(δ∗(qr, ε)).
Induction step: Let ya := x with a ∈ IB and y ∈ I∗B. Since S is prefix-
closed, y ∈ S. We have that π1(δ∗(qr, x)) = π1(δ(π1(δ∗(qr, y)), a)). Let Pi :=
π1(δ∗(qr, y)). By the induction hypothesis, y ∈ Pi. Thus, ya ∈ SuccT (Pi, a).
Since by construction SuccT (Pi, a) ⊆ π1(δ(Pi, a)), x = ya ∈ π1(δ(Pi, a)) =
π1(δ∗(qr, ya)) = π1(δ∗(qr, x)). ut

Proof of Theorem 1

Proof. Let P be a closed partition of an observation table T = (S,E,Q), and
MP = (Q, I,O, δ, qr) the corresponding Mealy machine. Let x ∈ S, e ∈ E and
Q(x, e) 6= ⊥. We will show by induction on the length of e that Q(x, e) =
MPL

(xe).

Base Case: For |e| = 1, we haveMPL
(xe) = π2(δ∗(qr, xe)) = π2(δ(π1(δ∗(qr, x)), e)).

Let Pi := π1(δ∗(qr, x)). By Lemma 1, x ∈ Pi. Since Q(x, e) 6= ⊥ and P is closed,
SuccT (Pi, e) 6= ∅. Thus, by the definition of MP we have that π2(δ(Pi, e)) =
Q(y, e) for some y ∈ Pi. Since x and y are in the same class of the partition, they
are compatible. Thus, Q(y, e) = Q(x, e).
Induction step: Let az := e with a ∈ IB and z ∈ I+B , and let Pi ∈ P s.t.
x ∈ Pi. Since P is closed, Q(x, e) = Q(x, az) = Q(y, az) for some y ∈ Pi, and
since ya ∈ S and E is suffix-closed, Q(y, az) = Q(ya, z). By the induction
hypothesis, we have that A(ya, z) = MPL

(yaz). By Lemma 1, x ∈ π1(δ∗(qr, x))
and y ∈ π1(δ∗(qr, y)). Since the classes of P are disjoint and x, y ∈ Pi, we have
that π1(δ∗(qr, x)) = Pi = π1(δ∗(qr, y)). So the inputs x and y take the machine
MP to the same state, and thus MPL

(yaz) = MPL
(xaz) = MPL

(xe). ut

Proof of Theorem 2

Proof. Let T = (S,E,Q) be a closed observation table. Let M = (Q, I,O, δ, qr)
be a minimum-size machine that agrees with T . We have to show that there is a
P ∈ Πmin(T) s.t. M is isomorphic to some machine in γ(MP).

Let M ′ = (Q′, I, O, δ′, qr), with Q′ = Q∪{error}, be a machine obtained from
M by replacing all transitions that are not used by any input from (S∪S·E)∩tr(A)
with transitions to a new error-state with output ⊥. This machine still agrees
with T (but it has one state more than a minimum-size machine).

For each q ∈ Q′, let Pq ⊆ S be the set of words s.t. M ′ reaches state q when
reading a word from Pq, formally: Pq = {x ∈ S | π1(δ′∗(qr, x)) = q} (note that
Perror = ∅).

We will now show that P := {Pq | q ∈ Q′}\{Perror} is a closed minimum-size
partition for T .

• Since M ′ is deterministic, all elements of P are disjoint.

• The rows for all words that are in the same class of P are pairwise compatible.
We will prove this by contradiction. Assume there are x, y ∈ Pq s.t. x and
y are not compatible. This means there is some e ∈ E, s.t. Q(x, e) 6= ⊥,
Q(y, e) 6= ⊥, and Q(x, e) 6= Q(y, e). But then, by the definition of agreement,
M ′L(xe) 6= M ′L(ye). This is a contradiction since x and y both lead to the
same state q ∈ Q′ in M ′.

• Let Pq ∈ P and a ∈ IB. We have to show that there is some Pj ∈ P s.t.
SuccT (Pq, a) ⊆ Pj .

SuccT (Pq, a) = {xa ∈ S | x ∈ Pq}
= {xa ∈ S | x ∈ {y ∈ S | π1(δ′∗(qr, y)) = q}}
= {xa ∈ S | π1(δ′∗(qr, x)) = q}
⊆ {xa ∈ S | π1(δ′(π1(δ′∗(qr, x)), a)) = π1(δ′(q, a))}
= {xa ∈ S | π1(δ′∗(qr, xa)) = π1(δ′(q, a))}
⊆ {x ∈ S | π1(δ′∗(qr, x)) = π1(δ′(q, a))}
= Pπ1(δ′(q,a))

If Pπ1(δ′(q,a)) 6= Perror, then we can set Pj := Pπ1(δ′(q,a)). Otherwise, SuccT (Pq, a) =
∅, and thus any Pj ∈ P satisfies SuccT (Pq, a) ⊆ Pj .

• P is a minimum-size partition for T . We will show this by contradiction.
Assume that there is a minimum-size partition P ′ that is smaller than P .
Since T is closed, P ′ is closed. The machines in γ(MP ′) agree with T and
have size |P ′| < |P | = |M |. Contradiction.

• Since P has minimum size and T is closed, P is closed.

We will now show that the machine MP = (QP , I, O, δP , qP,r) is isomorphic to
M ′. Let f : QP → Q′ s.t. f(Pq) = q and f(error) = error. f is an isomorphism
between MP and M ′:

• It is easy to see that f is bijective.

• f(qP,r) = qr, since ε ∈ Pqr .

• Assume that δP (Pi, a) = (error,⊥) for some class Pi and some input a.
We have that Succ(Pi, a) = ∅. Since P is closed, there is no x ∈ Pi s.t.
Q(x, a) 6= ⊥. Thus, there is no x ∈ Pi s.t. xa ∈ tr(A), and hence δ′(f(Pi), a) =
(error,⊥).

• Otherwise, δP (Pi, a) = (Pj , b). Since for some x ∈ Pi, Q(x, a) = b, by
agreement we have that π2(δ′(f(Pi))) = b. Further, since Succ(Pi, a) 6= ⊥
there is some x ∈ Pi s.t. xa ∈ S and xa ∈ Pj . Thus, π1(δ′(f(Pi))) =
π1(f(Pj)).

Since M ′ differs from M only in the transitions that lead to the error state,
M is isomorphic to some machine in γ(MP). ut

Proof of Theorem 3

Proof. If the error state is not reachable in a composition with A, then there
is no x ∈ tr(A) s.t. MP takes any of the transitions to the error state when
reading x. Thus, modifying any of these transition does not change the behavior
of the machine for inputs from tr(A). Since right-equivalence only requires two
machines to behave in the same way for inputs from tr(A), all machines in γ(MP)
are right-equivalent. ut

3 SAT Problem

3.1 Computing the partitions

We reduce the problem of finding the partitions for a given size n, which is
an NP-complete problem, to a boolean satisfiability (SAT) problem. Related
reductions were used by [1] for minimizing incompletely-specified Mealy machines,
and by [3] for finding DFAs that agree with a set of positive and negative input
samples. However, in contrast to our approach, their approach directly computes
one arbitrary machine that agrees with the samples. On the other hand, our
approach computes a partition which, in general, corresponds to a machine,
in which some transitions may be unspecified (if the partition is not closed or
input-complete). Thus, we can exploit this additional information to determine
which output queries should be performed.

SAT solvers typically require the problem to be in conjunctive normal
form (CNF). We will first give a high level-description of each subproblem,
and then show how to translate it to CNF.

In the following, we will use literals of the form rx,i ∈ B to denote that row x is
in class i of the partition. We assume that the rows are numbered from 0 to |P |−1.

Covering Condition: All rows of the table must be in at least one class. We
therefore add, for all rows x, a clause of the form rx,0 ∨ rx,1 ∨ · · · ∨ rx,n−1.

Disjointness: No row must be in more than one class. This can be expressed by
adding, for all rows x and classes i, the following implication: rx,i =⇒

∧
j>i ¬rx,j .

In CNF, this corresponds to the following set of clauses:
∧
j>i(¬rx,i ∨ ¬rx,j).

Compatibility: All rows that are in the same class must be pairwise compatible.
For a row x, let Inc(x) be the set of states that are incompatible to x. To ensure
that no incompatible rows are in the same class, we add for each row x and each
class i the implication rx,i =⇒

∧
y∈Inc(x)

y>x
¬ry,i. In CNF, this corresponds to∧

y∈Inc(x)
y>x

(¬rx,i ∨ ¬ry,i).

Common successors: For all rows that are in the same class i, and for which the
observation table also contains their successor rows for a given input a, there must
be a class j that contains all these successor rows. Thus, we have for each input
symbol a and each class i a clause of the form ∃j : ∀x : (rx,i =⇒ rx′,j), where x′

is used to denote the successor row of x under input a. If the observation table
does not contain this successor row, the corresponding implication is omitted.

In SAT, we can represent the existential quantifier as a disjunction, and
the universal quantifier as a conjunction. The formula is thus equivalent to∨

0≤j<n (
∧
x(¬rx,i ∨ rx′,j)). A direct conversion of this formula to CNF would

lead to an exponential increase in its size. To obtain a more compact represen-
tation, we introduce an auxiliary literal for each input symbol and class of the

form Za,ij . The following formula is then equisatisfiable to the formula above:

(
∨

0≤j<n Z
a,i
j) ∧

∧
0≤j<n

∧
x(¬Za,ij ∨ ¬rx,i ∨ rx′,j).

Finding a partial solution: Since we are only interested in sets of classes, the
ordering of the classes does not matter. Thus, by assigning some rows to a fixed
class, we can significantly reduce the number of symmetrical cases the SAT solver
has to consider. We exploit this by precomputing a “partial solution”. More
specifically, we first compute a set S = {x0, . . . , xk} of pairwise incompatible
rows. For all solutions of the SAT problem, each of these rows must be in a
separate class. Thus, we can obtain an equisatisfiable formula by just assigning all
elements of S to arbitrary, different classes. To this end, we replace the covering
clauses of the rows in S by the clause rx0,0 ∧ rx1,1 ∧ · · · ∧ rxk,k. Furthermore,
for a row xi ∈ S, we can remove all literals rxi,j such that j 6= i from the SAT
formulation, and simplify the other constraints accordingly.

Moreover, we can also use the cardinality of S as a lower bound for the
required number of classes.

If we represent the compatibility relation on the rows as a graph (s.t. there
is an edge whenever two rows are compatible), the problem of finding such a set
S corresponds to finding an independent set in the graph. While the problem of
finding a maximum independent set is NP-hard, a heuristic is sufficient for our
purposes, since a non-maximal set would just lead to a smaller reduction of sym-
metries, and to a smaller lower bound, but it would still lead to a correct solution.

We use the following simple sequential greedy heuristic to find a set of pairwise
incompatible rows. We first create a list of all rows that is sorted in reverse order
based on the number of incompatible rows for each row (or equivalently, the
degree on the compatibility graph). The algorithm maintains a set S of pairwise
independent states, where S is initially empty. We then iterate over the sorted
list of rows. Whenever we encounter a row that is incompatible to all rows in S,
we add this row to S. A similar approach was used by [3].

Excluding previously discovered partitions: Since our algorithm searches
for multiple partitions for the same observation table, we add for each previously
found partition a disjunction of the negated literals for this partition.

References

1. Abel, A., Reineke, J.: MeMin: SAT-based exact minimization of incompletely specified
mealy machines. ICCAD ’15, IEEE Press (2015)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and computation 75(2), 87–106 (1987)

3. Heule, M., Verwer, S.: Exact DFA identification using SAT solvers. In: Grammatical
Inference: Theoretical Results and Applications, vol. 6339, pp. 66–79 (2010)

